
Introduction
Given that designing mobile platforms for specific citi-
zen science project needs can cost tens of thousands 
of dollars, according to Yarmosh (2017), the ubiquity of 
smartphones makes them a highly desirable platform 
(Dehnen-Schmutz 2016). In recent years, citizen science 
projects have begun to adapt smartphones to provide 
novel crowdsourcing opportunities (Stoop 2017) across 
fields as diverse as bird watching (eBird) and aurora sight-
ings (Aurorasaurus), to precipitation monitoring (mPing) 
and meteor spotting (Meteor Counter). Notably, the cur-
rent ensemble of more than 1,600 citizen science projects 
catalogued by SciStarter (2019) includes 50 that gener-
ally employ smartphone cameras and text-based data, 
but they do not actually involve the use of smartphone 
sensors themselves. The only exceptions appeared to be 
CrowdMag, which uses the smartphone magnetometer 
to make geomagnetic field measurements, and an infor-
mal project Earth Rotation Detector that uses the acceler-

ometer to detect local acceleration differences caused by 
Earth’s latitude-dependent centrifugal acceleration.

Previously, Odenwald (2019) examined how modern 
smartphone magnetism and radiation sensors available 
since 2015 performed against professionally-calibrated 
systems. This knowledge was then applied to using 
smartphones for the detection of geomagnetic storms 
(Odenwald 2018) and radiation doses at airline altitudes 
(Odenwald 2019). Similar radiation and magnetism 
measurements form the basis for citizen science projects 
such as Our Radioactive Ocean, and the previously men-
tioned project CrowdMag. This paper extends the work by 
Odenwald (2019) and investigates light and sound sensors 
to assess their accuracy and precision in comparison with 
professional instrumentation. The available literature on 
the rigorous calibration of these sensors is modest to non-
existent and in all cases is many years out of date as newer 
smartphones have entered the market.

Studies have been conducted to evaluate the accuracy 
and precision of smartphones as substitutes for expen-
sive professional light-metering systems, which can cost 
upwards of $500. DIAL (2016) investigated the iPhone 
5, iPhone 6, Samsung Galaxy S5, and Sony Xperia Z1 and 
Z2, and Gutierrez-Martinez et al. (2017) studied the LG 
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Nexus 5. Among the non-photographic uses, Cerqueira, 
Carvalho, and Melo (2018) investigated the iPhone 5 for 
use in the occupational health industry as general illu-
minance monitors to check workplace compliance with 
safety regulations. The available literature on smart-
phone sound sensors is equally modest. Most published 
discussions are either informal or based upon smart-
phone and sensor technology that is significantly out of 
date. Moreover, discussions do not cover methodologies 
for properly calibrating smartphone sensors but merely 
address the single-measurement discrepancies between 
measured and calibrated standards.

Detailed acoustic studies (Brown and Evans 2011) of 
an iPhone 3GS provide some insight into how well older 
smartphones can be used for making precision acoustic 
measurements. Kardous and Shaw (2014) selected nine 
different smartphone platforms available by January 2013 
and examined ten iOS apps and four Android apps that 
purportedly measured sound intensity. Robinson and 
Tingay (2014) tested Galaxy S2 and Nexus 7 smartphones 
and concluded that under real-world conditions, these 
specific smartphones were generally unreliable in meas-
uring sound intensity.

A limitation of the studies cited above is that, while 
they assess the accuracy and precision of the sensors, they 
do not provide a calibration for them that can overcome 
some of the measurement inaccuracy. These earlier light 
and sound sensor studies often take the form of a blog—
informal discourse rather than articles in which data are 
systematically presented in graphical or tabular form and 
are formally analyzed. Nor is it common to find discus-
sions about how to calibrate light and sound sensors to 
improve their accuracy (but see Cerqueira, Carvalho, 
and Melo 2018). Moreover, older smartphone models (in 
some instances more than six years out of date) do not 
reflect more recent sensor improvements. For example, 
sound measurements use the output from smartphone 
microphones that are based on micro-electro-mechanical 
systems (MEMS). These devices have more than doubled 
in their sensitivity (signal-to-noise) in the past ten years, 
owing to increasing consumer demand, and they now 
rival electret-based microphones (Widder and Morcelli 
2014; Kardous and Shaw 2016). Changes in smartphone 
sensitivity can appear when comparing earlier versions of 

smartphones by the same manufacturer (e.g., iPhone 5s 
versus iPhone 11), or differences between manufacturers. 
MEMS as mechanical systems are subject to wear, so there 
is also the potential for them to become less sensitive over 
time. There are, however, no current studies that have 
investigated smartphone microphone aging.

In the following sections, I detail the methodology I 
used to compare light and sound readings of two Android 
models, the Samsung Note 5 and Galaxy S8; and an iPhone 
6S. Specifically, I describe the laboratory instruments used 
as standards, the apps I selected for light and sound read-
ing on each phone, and the procedures to quantify the 
noise inherent in the sensors, the variability in readings 
among the same phone model running identical operat-
ing systems and apps, and the overall accuracy and preci-
sion of the phones as sensors. For both light and sound, I 
derive calibration curves that, when applied to phone sen-
sor readings, could improve their accuracy significantly.

Methodology
Selection and characteristics of smartphones for 
analysis
Owing to availability and world-wide popularity, I used 
the Samsung Note 5 (2015: Android) and the Samsung 
Galaxy S8 (2017: Android) smartphones, as well as the 
iPhone 6s (2015: iOS). Specific information about the 
popularity of individual models is hard to assess because 
of the nonuniformity of publicly available sales reports. 
By the middle of 2016, the Samsung Note 5 was among 
the Top-10 smartphones in use with a 7.8% share world-
wide (Ehsan 2016). The Samsung S8 model was the 
world’s best-selling Android smartphone and achieved 
a 2.8% market share by the second quarter of 2017 
(Mawston 2017). Similarly, by 2017, 728 million iPhones 
were in use, of which 47% were the iPhone 6/6s model 
(van der Wielen 2017).

In practice, calibration of smartphone sensors must 
regard these platforms as essentially black boxes. The 
exact sensor system found in a particular hardware con-
figuration is generally very difficult to determine from 
public data. An extensive GOOGLE search was performed 
to uncover the specific sensor models being used for the 
iPhone 6s (Table 1). Samsung specifications were found 
by downloading the Spec Device app on each phone.

Table 1: Manufacturing date, usage, and light and sound sensor data for the iPhone 6S, Samsung Note 5, and 
Samsung Galaxy S8.

iPhone 6s Samsung Note 5 Samsung Galaxy S8

Release date September 9, 2015 August 13, 2015 April 21, 2017

Phones in circulation 773 million (ca 2015) 11 million (ca 2017) Over 20 million

Operating system iOS 11.2.5 (2018) Android v5.1.1 (Lollipop) Android 8.8.0

Camera 12.2 megapixel f/2.2 16 megapixel f/1.9 12.2 megapixel f/1.7

Camera array Sony iSight 1.22 µm pixels SonyExmor RS-IMX240 1.2 µm pixels LSI S5K2L2 or Sony IMX333, 
1.4 µm pixels.

Microphone Knowles 530&532/D5307 Knowles electret Knowles electret

Light sensor AMS #TSL2586 AMS TMD4903 AMS #TMD4906

Note: Data from Costello (2018), TechInsights (2018), ElectronicWiz (2016), and ElectronicProducts (2018).
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General calibration approach
The investigation of smartphone light and sound meas-
urements and their calibration follows a common 
methodology. First an assessment is made of the meas-
urement noise contributed by the sensor itself, usually 
a result of the sensor’s analog-to-digital converter and 
its digitization noise. This feature can be the result of a 
variety of internal electronic noise sources that influence 
the performance of the analog-to-digital converters as 
discussed in Engineer Zone (2012, 2018) and Maxim Inte-
grated (2017). Because digitization noise is non-Gaussian 
and does not follow a square-root law, it represents the 
minimum noise level that can be achieved by the sensor 
even after averaging a significant number of measure-
ments. This is particularly important for crowdsourced 
measurements because it sets a limit to the maximum 
accuracy obtained by averaging multiple measurements, 
which would normally improve measurement accuracy 
by reducing the dispersion about the mean value by √N.

Selection of calibration instrumentation
For light measurements, I used the Extech Instruments 
LT-300 Light Meter ($115; hereafter LT-300), which uti-
lizes a remote light sensor equipped with a hemispherical 
light-diffusing dome. The nominal light-metering accu-
racy of this instrument is ±5%. A comparison of this light-
metering instrument with a Sekonic C-7000 ($2,500) 
metering system yields a similar ±5% accuracy and both 
comply with JIS C1609-1:2006 general qualifications for 
an A-class illuminometer.

For the sound measurements I used the B&K Precision 
Model 732A Sound Level Meter ($310; Hereafter BK-Meter), 
which provides 30–130 dB measurement capability at ±1.5 
dB. The BK-Meter meets the IEC 60651 Type II sound level 
meter standard, which is the general-purpose grade for 
field work. Systems that meet the more restrictive Type I 
certification at σ = ±0.7 dB, by comparison, would be con-
sidered precision grade for lab work. Given the expected 
quality of the measurements with these smartphone sys-
tems, it is unnecessary to obtain instruments of any higher 
quality, which come at considerably greater expense.

Results
Light intensity
Unlike other physical properties such as magnetism, 
sound, and acceleration that use a single sensor system 
across different types of phones, illuminance measure-
ments are being made using different approaches. A dedi-
cated light sensor near the front camera is used by virtually 
all android apps, while iOS apps use data provided by the 
back camera and written into the exchangeable image file 
formal (EXIF) data stream for the scenery being imaged. 
EXIF data includes the camera model, f/stop, exposure 
speed, ISO number, and scene brightness value, as well as 
date, time, and location. When an image is taken, this data 
is written into the header of the image file. The practical 
difficulty in using the android light sensor is that to read 
the illuminance value, the user has to be close enough to 
the screen to see the display, but this immediately inter-
feres with the illuminance measurement itself. Since none 
of the apps allow the data to be recorded in a file for later 

use, there is no way to avoid the user-interference issue. 
Only the back-camera EXIF data allows user non-inter-
ference. Meanwhile, although the light sensor produces 
a continuous range of illuminance values at about 1 lx 
resolution over a range from 0 to 60,000 lx, the back-
camera metering system combines information from the 
exposure speed and f/stop to determine the illuminance 
of the field-of-view via the spot-metering areas. This leads 
to sudden jumps in the calculated illuminance, so this is 
not a smoothly varying quantity.

For investigations with the Samsung Note 5 and Galaxy 
S8, the Lux Light Meter app by Doggo Apps (Lux) uses the 
dedicated light sensor on the front of the smartphone but 
does not provide an image to guide the location of the 
field of view. Light Meter by WBPhoto (LM) uses the back 
camera to measure the reflected light illuminance from 
the EXIF data. It also uses the front light sensor to directly 
measure the incident light illuminance. For the iPhone 6s, 
tests were conducted on two iOS apps: Galactica ($1.99) 
by Flint Soft Ltd. that uses the back camera and provides 
an image. Other camera-based apps such as Light Meter 
by Vlad Polyansky and Light Meter by Elena Polyanskaya 
were also examined but the data were identical to those 
provided by Galactica. Galactica uses the EXIF data stream 
to compute the reflected light illuminance. For both the 
Android and iOS phones, no diffusing dome was used, but 
only the smartphone in a normal measurement mode, 
which would be commonly employed by the average user.

For the methodologies used by, for example, DIAL 
(2016) and Kardous and Shaw (2014), a professional-grade 
instrument was used to compare the smartphone sensor 
readings against a calibrated metering system. Previous 
studies focus on deviations in single point measurements 
between a calibration system and the smartphone output, 
rather than availing themselves of the improved accuracy 
by combining multiple measurements to define a calibra-
tion curve that reduces the overall measurement uncer-
tainty. Calibration is the process of comparing a carefully 
measured input signal to the output provided by a detec-
tor. This results in a functional relationship that can be 
modeled by a regression curve that minimizes the over-
all variance in the ensemble of measurements. Previous 
studies may note that the calibrated input and resulting 
output differ by large factors, but do not take the next 
step in the calibration process and create a calibration 
function that can be used to correct the output values 
and place them on a proper calibration scale. I have taken 
the next step and also use these measurements to estab-
lish the smartphone sensor calibration curve, which is 
defined by performing a regression analysis on multiple 
measurements.

For the light calibration, the total post-calibrated uncer-
tainty in the measurements σT, is the quadrature sum of 
the uncertainty in the calibrator σC and in the smartphone 
measurement σS according to σT

2 = σS
2 + σC

2. Even with 
perfect smartphone measurements such that σS = 0, the 
calibration process is limited by how well the calibrator 
itself has been calibrated. The specifications for the LT-300 
indicate a σC = ±5% accuracy in light metering across its 
full scale (10 to 100,000 lx), which implies σC = ±0.5 lx at 
the low end and σC = ±5000 lx at the high end of the scale. 
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We see that these measurement accuracies for the light 
and sound meters is generally higher than the measure-
ment uncertainties themselves, and so these instruments 
are appropriate calibrators within the available price 
ranges of the investigations.

An extensive discussion of light-metering theory and 
techniques is provided by Hiscocks (2014). The proper 
method for calibrating a light sensor is to use light sources 
with the same color temperature at various brightness 
levels; however this approach is expensive to implement. 
Instead, a convenient light source is the sun (5,770 K), 
which varies from 10,000 to 500,000 lx over the course of 
a day and over several seasons. Provided that the sun angle 
is high enough in the hours before local noon, the color 
temperature of the solar spectrum will not change appre-
ciably because of atmospheric absorption, which will tend 
to scatter the blue light and make the color temperature 
progressively colder (i.e., redder) as the sun sets.

Light levels were measured outdoors by each app in direct 
sunlight by placing a white sheet foamboard on a leveled 
surface and using the back camera to measure the reflected 
light. Without casting shadows over the surface, the back 
camera was aimed at the foamboard so that its image filled 
the entire field of view. The calibrated LT-300 meter was 
used to measure the direct sunlight striking the foamboard 
by placing the sensor dome on the foamboard facing sky-
wards. The derived albedo of the foamboard, defined as the 
ratio of the reflected to incident light, was 0.7.

The dynamic range of the light measurements ranges 
from 1 to 500,000 lx depending on which app is used. 
It is virtually impossible for calibrations using a single 
function to work well over such large dynamic ranges. 
Most solid-state sensors usually have a combination of 
linear and nonlinear responses, which defeats obtaining 
a single linearization between the input illumination 
and the output measurement. Consequently, I consid-
ered three separate ranges that correspond to similar 
environmental conditions corresponding to high (5k to 
500,000 lx) bright sunlight, mid-range (100 to 5000 lx) 
shade and indoors, and low (0 to 100 lx) dawn/twilight 
illuminance levels.

Sources of noise among the phone models
The level of the digitization noise will be determined for 
each sensor by making a series of measurements of a fixed 
source reference, and re-scaling the display of the sensor 
readings to reveal the step-wise signature of the digitiza-
tion. Smartphone models do not generally use the same 
sensor type, and slight manufacturing differences in 
placement of the sensor inside the smartphone can also 
create a copy-to-copy change in measurement accuracy. 
To investigate these variations, measurements with four 
Samsung Note 5 devices, four Samsung Galaxy S8 devices, 
and two iPhone 6s devices will be compared.

One of the most basic features of a light-metering sys-
tem is its response to a constant source of light. A system 
that suggests a light source is varying in intensity when 
physically it is not can be a problematic instrument for 
any number of applications. For many apps that return 
measures of magnetic field strength, barometric pressure, 
or acceleration, it is common to see a rapidly changing 

display in part caused by the digitization level at 1-LSB of 
the sensor output. By comparison, light-metering displays 
typically present data to integer values of lx that remain 
fixed in value for a constant-intensity light source. The 
Galactica app does not produce a continuous reading of 
illuminance as light levels are smoothly increased using 
a variable-intensity lamp. Instead, they jump by discrete 
steps that are as much as 50% of the illuminance for dim 
light (ca 10 lx) and decrease to <5% at >10k lx. However, 
other iOS apps such as Light Meter Polyanskaya (2017) 
uses the EXIF data and a different processing algorithm 
to provide smooth continuous measures at 1 lx intervals 
that remains stable for a fixed light source, suggesting 
that the equivalent digitization noise is <1 lx correspond-
ing to <1% measurement error above 100 lx. A similar 
response is provided by the Android Light Meter app by 
WBPhoto that uses the light sensor. The result is that the 
light-sensor (Android) metering system is superior to the 
camera-based (iOS) metering systems in terms of their 
measurement accuracy.

In Figure 1, a selection of measurements using the 
iOS and Android illuminance-metering apps is shown, 
and is scaled in such a way to magnify the step changes 
between light-level measurements as the ambient light 
intensity increases. The percentage of the step interval to 
the applied illuminance shows how the steps in measure-
ment of about 10 lx in absolute terms represent a grow-
ing percentage of uncertainty for low-level illuminances 
than at higher levels. The iOS Galactica readings are sig-
nificantly noisier throughout the range and especially 
below 1,000 lx but drop significantly above 1,000 lx.  
This occurs because of the designer choice to use the 
F/stop, exposure speed, and ISO numbers of the camera 
setting in the EXIF image information to calculate equiva-
lent lx. These parameters are discrete, which leads to non-
uniform steps in lx across the range of the metering. The 
Light Meter app by Polyanskaya (2017) also uses the EXIF 
data but supplements this with a proprietary mathemati-
cal algorithm that smooths out the final readings into a 
semi-continuous series of values. In contrast, the illumi-
nance readings from the Android phone app, Light Meter 
(LM) has a dedicated Sensor Meter mode using the front 
light sensor, which provides a continuous variation in out-
put measurements in steps of 1 lx. We see in Figure 1 
that for camera-based EXIF apps such as Galactica, the 
step change between consecutive illuminance levels is 
about 5% for higher illuminance measurements, but for 
lower illuminance levels this change can amount to more 
than 25%. This implies that the app cannot discriminate 
between two illuminance levels to better than 25% at the 
low end of the scale. This behavior is analogous to digiti-
zation noise, which limits the ability to measure faint illu-
minance changes accurately when they are comparable to 
the 1-LSB level.

Comparison between multiple platform copies
The measurements from four Samsung Note 5 and four 
Samsung Galaxy S8 phones were compared at the same 
light levels to gauge the copy-to-copy variations within 
the two phone models. Since smartphone models often 
use different light sensor and imaging array technologies 
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as shown in Table 1, this test is important for determining 
consistency across platform copies.

I also performed the measurement on the two Android 
light meter apps to assess whether the apps themselves 
were contributing any measurement error. Once again, 
Light Meter (LM) uses the camera meter (reflected light) 
and Lux Light Meter (Lux) uses the light sensor (incident 
light) to make the metering measurements. The result-
ing measurements of a white foamboard are shown in 
Table 2.

For the Extech meter, the ratio of the reflected to inci-
dent light (albedo) is 0.5, 0.71, and 0.71 respectively, while 
the smartphone metering systems are generally inconsist-
ent with the Extech expected value near 0.7 for the white 
foamboard. Because the smartphone measurements are 
not made with the same sensor system, it is possible that 
the albedo errors occur because of differing lx calibrations 
between the systems (back camera for reflected light ver-
sus dedicated light sensor for incident light). Nevertheless, 
the same app operating on the two different platforms 
yields similar results for high illuminance levels (e.g., 
16,300 lx) but offers very discrepant measures under low 

illumination (e.g., 114 lx). The Note 5 performs less accu-
rately in general.

High illuminance levels (3k to 500k lx)
Each point in Figure 2 represents an individual measure-
ment at the given calibration level for the reflected light 
measured with the Extech meter using an albedo of 0.7. 
The regression curve has been forced to y-intercept of 0 
to reflect the natural condition that zero-illumination cor-
responds to a zero measurement. The R2 value exceeds 
0.9 and indicates that the calibration regression accounts 
for the majority of the correlation observed. For purposes 
of calibration, the reflected light measurement value is 
known (y-axis) so it is the range of values along the x-axis 
that determines how well the measurement leads to a 
unique calibrated value. Once the smartphone has been 
calibrated using the regression line to obtain the equiva-
lent calibrated, reflected illuminance, the residual post-
calibration illuminance error is σc = ±12%. The use of 
other iOS-based apps such as Light Meter by Guidicelli and 
Lux Light Meter by Butta yield nearly identical data values 
and regression curves and are not shown in Figure 2.

Figure 1: The percentage change of the measurement step interval to applied illuminance for the camera-based iOS 
apps: Galactica (triangle), Light Meter by Polyanskaya (asterisk), and the sensor-based Android app Light Meter by 
WBPhoto (dot).
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Table 2: Comparisons of standard light-meter readings with two Samsung phones models for three light levels.

Three light conditions for 
the LM and Lux Apps

Extech meter
(lx)

Extech meter
(lx)

Samsung S8
(lx)

Samsung Note 5
(lx)

Direct Reflected N = 4 N = 4

Twilight

LM (incident) 2.0 1.0 7 ± 1 9.5 ± 0.5

Lux (reflected) 2.0 1.0 1.5 ± 0.5 0.5 ± 0.5

Albedo 0.24 0.05

Indoor daylight

LM (incident) 114 81 117 ± 1.5 112

Lux (reflected) 114 81 100 ± 3.7 67 ± 7

Albedo 0.85 0.6

Outdoor shade

LM (incident) 16,300 11,600 27,000 ± 1000 29,200 ± 870

Lux (reflected) 16,300 11,600 11,000 ± 680 11,100 ± 570

Albedo 0.41 0.38

Figure 2: Comparison of reflected illuminance levels between calibration (LT-300) and iPhone 6s camera-based 
Galactica app (triangle).
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Medium illuminance levels (100 to 3,000 lx)
Although high levels of illumination are of interest to out-
door daylight studies, other applications of light metering 
can emerge for indoor conditions (100 to 600 lx), full illu-
mination in well-lit rooms, and outdoor shady conditions 
(3,000 lx).

In Figure 3, there is little difference between the 
regression constrained to a 0 lx intercept and one free 
to determine this parameter; however, only the former is 
physically reasonable since illuminance is a positive quan-
tity. The resulting dispersion of the measured values about 
the y = 3.1x regression is σc = ±16%, owing primarily to 
the deviations between 1,500 lx and 600 lx.

Low illuminance levels (0 to 100 lx)
Intrinsically faint sources such as moonlight (0.1–2 lx), 
aurora (1–50 lx) or the twilight sky (10–200 lx) occupy 
this illuminance zone, so the behavior of smartphone apps 
under these conditions is of interest. Once again, using 
natural unfiltered sunlight under sunset and twilight con-
ditions insured that the spectral distribution remained 
that of a pure black body, though at a bluer effective color 
temperature of 12,000 K. Aurora are reported to have a 
color temperature between 3,000 and 5,000 K (Sammtle-
ben 2018) while the full moon is approximately 4,000 
K. No correction for this color effect was made in the 
testing process. A variety of measurements were made 
using indirect, shaded sunlight with the results shown in 
Figure 4. Note that at about 20 lx it is not possible to read 
newspaper type face smaller than 8-point font, and by 3 lx 
one cannot easily read headlines written in 12-point font: 
These are circumstances often reported by observers of 
very bright auroral displays. For the measurements, the 

camera-based metering clearly shows jumps at 30, 40, 60, 
and 100 lx.

By applying the y = 2.5x calibration, the residual error 
becomes σc = ±18%, largely because of the influence of 
the jumps in smartphone measuring over this range. 
Extending the y = 3.1x regression for the medium-illumi-
nance range yields a distinctly different (dashed line in 
Figure 4) calibration, so low-illuminance measurements 
require a separate calibration curve.

Sound intensity
For the sound analysis we used DecibelMeter by 
Byhunghun Yang, which provides average, peak, and 
current levels and a simple bar graph display. Decibel 
Level by Qi Chen is a free app that offers a bare-bones dis-
play of the peak, average, and current dB measures, but 
is populated by frequent popup advertisements. Decibel 
Sound Meter by Lee Pyoung Lo also offers no graphical 
information but only a single number that changes so 
rapidly that it is nearly impossible to record sound levels. 
The app Decibel 10th (or Decibel X) by SkyPaw Co. Ltd. has a 
superior display including real-time plot, an analog meter 
dial, and digital display of the average, current, and peak 
sound levels. It allows for variable sampling rates from 4 
to 20 Hz, and is also one of very few sound-meter apps 
that is claimed to be pre-calibrated. The data can also be 
recorded and exported as a .csv file.

Sound measurements were made using a variety of 
environmental sources that were then measured with 
the BK-Meter to establish their calibrated levels, and they 
were simultaneously measured with the smartphones to 
create the calibration curve for each smartphone model. 
An additional convenient sound source was created by 

Figure 3: Data for Galactica (triangle) with linear regression forced to a 0 lx y-intercept to avoid an unphysical, negative 
illuminance as the y-intercept.
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tuning an AM-band radio between stations so that only 
the random noise was present. The three smartphone 
models together with the BK-Meter were placed on a table 
at the same distance from the speaker, and the volume 
of the radio was adjusted over a BK-Meter range from 30 
to 75 dB. The average sound level for each of the smart-
phones with the Decibel 10th app running continuously 
was then noted.

For purposes of statistical analysis involving the calcula-
tion of averages and standard deviations, sound intensity 
has to be considered differently. Sound intensity dB units 
obey what is termed a lognormal distribution in that the 
decibel units themselves may follow a normal, Gaussian 
distribution characterized by a mean and standard devia-
tion, but the physical units of power follow a lognormal 
distribution. The choice of which system to use depends on 
the purpose being served and either representation is valid 
(see for example the discussions in Science Direct 2019). 
For example, consider a series of five measurements: 47, 
43, 42, 43, 45 dB. Method 1, which works directly with 

the normal distribution of the dB values, would give <I> 
= 44.0 ± 2.0 dB. For Method 2, if we converted the dB val-
ues into their linear power units we would get 5.1 × 10–8, 
2.0 × 10–8, 1.58 × 10–8, 2.0 × 10–8, and 3.16 × 10–9 watts for 
which the average is 2.75 × 10–8 ± 1.39 × 10–8 watts, and 
the equivalent dB unit is just <I> = 44.4 ± 2.4 dB. Because 
of the nonlinear lognormal scale, measurements about 
the mean value <I> will depart from a Gaussian random 
distribution (i.e., the derived standard deviation differs by 
more than 20% between Method 1 and 2) as the dB vari-
ance increases beyond about ±2 dB, and so it is not useful 
to characterize the power distribution by an average or a 
standard deviation that is accurate only for distributions 
of measurements that are close to a normal, Gaussian 
distribution. Because for our noise measurements we are 
working with dB values that are very close together in 
magnitude, and these measured values are plotted directly 
to show their dispersion in dB units, we can calculate a 
mean and standard deviation directly from the dB values 
and their distribution. Since most sound-level meters are 

Figure 4: Data for Galactica (triangle). The regression curve (solid line) with linear regression forced to a 0 lx y-intercept 
to avoid an unphysical, negative illuminance as the y-intercept. Also shown is the regression used for the medium 
illuminance levels in Figure 3 (dashed).
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calibrated in the normally distributed units of dB and not 
in the lognormal units of watts, we will not concern our-
selves with the actual delivered noise power and its distri-
bution properties. This also simplifies the direct plotting of 
the data on a linearized coordinate axis.

Measurement noise
To determine the measurement noise, the Decibel 10th app 
was activated on three smartphones: Samsung Galaxy S8, 
Note 5, and iPhone 6s, and data was taken at a cadence 
of five samples/sec for several minutes and stored in 
.xls spreadsheets for analysis. An example of this data is 
shown in Figure 5 for the iPhone 6s. The digitization level 
at 1 LSB for the iPhone 6s, as for the Samsung Galaxy S8, 
is clearly seen as 0.1 dB.

Comparison with multiple Samsung phones
All eight smartphones were placed in three different, 
constant-intensity sound environments and were allowed 
to record data with the Decibel 10th app. Table 3 shows 
that there is considerable copy-to-copy variation within 
the same model type. The Galaxy S8 seemed to perform 
better overall, especially for the quieter sound levels. One 
of the Note 5 phones (shaded gray) gave dramatically dif-

ferent measurements than its other three copies, and in 
fact the measurements were found to be closest to the 
calibrated values.

The total variation of the measurement would consist of 
the contribution from the calibration residual (σc) and the 
copy-to-copy dispersion (σn). Within each model line, the 
sound measurements had an internal precision of approx-
imately σn = ± 1.5 dB for the Galaxy S8 and ±0.4 dB for the 
Note 5. The corresponding calibration residuals are σc = 
±3.3 dB for the Note 5, and ±1.6 dB for the Galaxy S8. When 
added in quadrature, we get a total accuracy of σt

2 = σc
2 + 

σn
2 = ±3.3 dB for the Note 5, and ±2.1 dB for the Galaxy 

S8. Although the Galaxy S8 appears to perform marginally 
better than the Note 5, such large residual uncertainties 
after calibration would not meet the requirements of an 
IEC 60651 Type II metering system (σ = ±1.0 dB), which 
is considered a general-purpose sound-metering system 
adequate for field work. Nevertheless, there may be some 
applications for which this level of post-calibration accu-
racy is adequate for less formal investigations.

Smartphone platforms use a variety of microphone 
technologies, and so we need to compare sound sensitiv-
ity in each phone and also determine their zero-points. A 
Samsung Note 5 and iPhone 6s were placed side-by-side in 

Figure 5: Representative fixed sound intensity data for the iPhone 6s with samples every 0.2 seconds. <S> = 68.2 ± 
0.11 dB.

Table 3: Sound comparisons with Samsung phones.

Sound Source Galaxy S8 Note 5

BK-Meter A B C D E F G H

Quiet room 29.8 30.3 29.9 32.9 29.9 50.9 50.2 50.6 37.0

Inside idling car 55.0 60.5 61.2 62.3 61.5 82.0 82.2 82.4 68.6

Electric lawn mower 89.2 82.1 77.0 78.5 76.8 104.5 105.0 105.5 91.3
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a quiet room with the same Decibel 10th app in operation. 
Initially, the Samsung phone registered the quiet condi-
tions as being near 65 dB. The calibration adjustment 
feature in the app was used to shift the Samsung data 
by −13dB so it matched the iPhone values, which were 
believed to be more typical of the quiet room sound level 
near 40 dB.

To examine the quietest levels of sound sensor perfor-
mance, the website Online Tone Generator (https://www.
szynalski.com/tone-generator/) (Szynalski 2019) provides 
a tunable (0 to 20 kHz) pure tone, whose sound level can 
be adjusted with the computer speaker volume slider. A 
tone at 1,000 Hz was selected at a BK-Meter level of 40 
dB and played in a quiet room where the ambient sound 
level was 35 dB as measured by the BK-Meter. The Decibel 
10th app was activated on three smartphones: Samsung 
Galaxy S8, Note 5 and iPhone 6s, and data was taken at 
a cadence of five samples/sec for several minutes and 
stored in .xls spreadsheets for analysis. Figure 6 shows 
three minutes of data sampled at the app’s fast cadence 
of 0.2 seconds. The standard deviation of the data shows 
that for the iPhone system, its measurement noise is ±1.5 
dB, while the Samsung Note 5 is much quieter at ± 0.5 
dB. The Samsung smartphone with an offset of −10.5 dB 
added, seems to be a more sensitive system (lower σ) than 
the iPhone 6s.

Relative performance tests
An iPhone 6s was placed on a flat surface face up with 
the microphone exposed. The results for various apps and 
environmental circumstances are shown in Table 4. Given 
that the dB scale is logarithmic, the variation in the meas-
ured values from app to app under the same environmen-
tal conditions is significant when compared with the ±5 
dB for the individual app measurements.

Absolute performance tests
Starting at 75 dB, the radio volume was lowered by 5 dB 
on the BK-Meter and the smartphone’s sound level val-
ues were noted until the ambient basement sound level 
was reached. The result of these measurements is shown 
in Figure 7. The linear regression calibration curve has a 
slope of 1.07, after the measured smartphone values were 
adjusted by applying an offset of −12 dB (Note 5), +5 dB 
(Galaxy S8) and −8 dB (iPhone) to reduce the dispersion of 
the measured values relative to the calibrated values.

Discussion
A previous investigation of smartphones by Odenwald 
(2018, 2019) for accurate detection of radiation and mag-
netism, together with a recent investigation of smartphone 
surface gravity measurements by Odenwald (2018), sug-
gested that these sensors and apps were able to return 

Figure 6: Quiet environment data for Decibel 10th comparison. Solid curve is the Samsung Note 5 and dots are the 
iPhone 6s. Sampling interval is 0.2 seconds.

Table 4: Acoustic levels measured on an iPhone 6s at a variety of locations.

Source Decibel meter Decibel level Decibel sound meter Decibel-10th

Summit of Mt. Greylock 63 65 38 39

Quiet room 58 59 30 43

Toyota Corolla engine 75 76 55 65

Jet plane interior 92 88 70 86

Electric lawn mower 89 86 70 86

Jack hammer @ 10 meters 89 67 73 86

Queen rock concert 95 85 75 109

https://www.szynalski.com/tone-generator/
https://www.szynalski.com/tone-generator/
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measurements adequate for several formal and informal 
citizen science investigations. The current study of smart-
phone-based sound and light measurements reveals that 
for some applications this technology may also find a niche 
suitable for formal citizen science and informal crowd-
sourcing projects. What the previous analysis shows is 
that although sound measurements can lead to consistent 
results, the diversity of the light measurement systems used 
by smartphones leads to a far more complex challenge.

Light
Providing a simple calibration for light meters is a chal-
lenge because the apps themselves are based on different 
operating principles. The majority of the iOS apps use the 
camera image EXIF data to calculate an illuminance, while 

Android-based apps predominantly use the dedicated 
light sensor. Also, the dynamic range from 1 to 500,000 
lx is a challenge to simulate under controlled conditions 
with constant color temperature.

We have already seen that illuminance measurements 
with smartphones involve a wide range of apps and sen-
sors. The iOS phones typically use the back camera and 
extract illuminance information from the EXIF data 
stream, but this creates discrete jumps in the scene illumi-
nance value (Figure 1) as the f-stop, exposure time, and 
ISO settings are incrementally changed. For very low light 
levels below 100 lx, these jumps can amount to more than 
50% of the illuminance value, whereas for very bright 
scenes above 1,000 lx, the uncertainty falls to below 5%. 
Android phones routinely use a dedicated light sensor on 

Figure 7: iPhone 6s (dot), Samsung Note 5 (square) and Galaxy S8 (triangle). The smartphone data obtained by the 
Decibel 10th app has been shifted by: Note 5 (−12 dB), Galaxy S8 (+5 dB), and iPhone (−8 dB) to place them as close as 
possible to the same linear regression calibration curve (solid line).
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the front face of the phone adjacent to the front camera. 
Although this data is reported as a continuous stream of 
values with a digitization of approximately 1 lx resulting 
in a measurement error of <1% above 100 lx, these light 
sensor–based apps require that the phone face the user, 
which means that shadowing of the sensor will invariably 
corrupt the data. Moreover, unlike the other systems stud-
ied (accelerometer, magnetometer, sound level) none of 
the common light-measuring apps allow for the data to be 
stored in an exportable data file (e.g., .xls). Consequently, 
the measurement process requires constant human inter-
vention, and a reliance on the clarity of the smartphone 
app displays, some of which cannot be easily read under 
high-illuminance conditions.

DIAL (2016), as in the current study, also used the 
smartphones with no diffusing dome over the camera 
lens. In that study, it was reported that the Galactica app 
was 180% above the reference value at 10 lx and 50% 
below the reference value at 10,000 lx using a low-voltage 
Halogen lamp, a compact fluorescent lamp (2,700 K), and 
an LED lamp (3,000 K). Our results for a 5,770 K solar illu-
minance also found similar over- and underestimates. A 
more detailed investigation also turned up other issues 
that have significant consequences to light measurement 
accuracy and precision.

Detailed measurements made with one platform 
(iPhone 6s) and one camera-based app (Galactica) yield 
a uniform scaling (Figure 2) that is very close to 3.4 
from 3,000 to 50,000 lx, and 3.1 from 100 to 3,000 lx 
(Figure 3). A significant reason this is not exactly 1.0 is 
that the Extech measurement was made with a diffus-
ing dome whereas the smartphone measurements were 
made with no diffusing dome covering the camera lens.

By applying the appropriate calibration curves to 
the high, medium, and low-illuminance conditions dis-
played in Figures 2, 3 and 4, the large errors in illumi-
nance measurement exceeding 150% reported by DIAL 
(2016) can be considerably reduced. The post-calibration 
errors for these three ranges are σ = ±12% (high range), 
σ = ±16% (medium range), and σ = ±18% (low range) and 
largely follow the increase because of the jumps in esti-
mated illuminance calculated from the EXIF data.

Because of the differing regression slope scalings 
between apps that use camera-based or dedicated sen-
sors, this calibration needs to be repeated for each app 
and smartphone combination. Table 5 is a list of common 
light sources and their illuminance level as gauged by the 
LT-300 light meter. Compare your light-metering app and 
platform with these values to establish your own cali-
brated scale relative to the professional metering system. 

For example, if you use the GE Daylight LED bulb (5,000 
K) at a distance of 1 meter, you should measure a direct 
(not reflected) illuminance of 263 ± 3 lx. The soft-white 
(2,700 K) bulb should give a slightly lower direct illumi-
nance of 235 ± 3 lx at 1 meter.

Calibration can proceed by using the Galactica app to 
measure the reflected illuminance from a white foam-
board or other white paper (albedo = 0.7). Multiply 
the incident illuminance from the light source in 
Table 5 by the albedo factor to get the expected reflected 
illuminance from the white surface. The scale factor for 
the app and smartphone combination is then the ratio of 
the calibrated reflected illuminance (lx) to the measured 
reflected illuminance (lx). For subsequent reflected illu-
minance measurements using Galactica, divide the app’s 
lx values by the appropriate scale factor derived from the 
regression curves above to get the calibrated, reflected 
illuminance.

As a final note, for some applications involving solar 
power electrical systems, a conversion between lx units of 
incident illuminance and watts/m2 is needed. Although 
this is not a feature provided by the light-measuring apps 
considered in this study, I used a DT-1307 solar power 
meter manufactured by CEM, Ltd. ($90), which has a 1 
w/m2 resolution and an accuracy of ±10 watt/m2. Both 
the LT-300 power meter and DT-1307 light meter use 
what at least superficially appear to be identical, remote, 
silicon photodiode light sensors under a hemispherical 
diffusing dome at the end of a coiled connecting cable. 
Simultaneous measurements under the same light condi-
tions spanning a factor of 10,000 in lx show a linear scal-
ing such that the constant of proportionality between the 
lx and power (flux) scales is 115 ± 10 lx per watt/m2.

Sound
Detailed acoustic studies (Brown and Evans 2011) of an 
iPhone 3GS provide some insight into how well older 
smartphones can be used for making precision acous-
tic measurements yielding accuracies of approximately 
±4.0 dB using acoustic sources of known intensity and 
frequency; however, they do not indicate how to calibrate 
the sensor data to place them on a standardized measure-
ment scale. Kardous and Shaw (2014) selected nine dif-
ferent smartphone platforms available by January 2013 
and examined ten iOS apps and four Android apps that 
purportedly measured sound intensity. Their tests using a 
calibrated acoustic generator found that between 65 and 
95 dB, the smartphones and apps were able to reproduce 
the calibrated sound intensities to about ±2 dB. Robinson 
and Tingay (2014) test smartphones under more realis-

Table 5: Common light sources and their calibrated direct illuminances.

Light source Distance (m) LT-300 (lx)

GE LED 40 watts, Daylight (480 lumens) 0.3 2,950 ± 10

1.0 263 ± 3

GE LED 40 watt, soft white (480 lumens) 0.3 2,350 ± 20

1.0 235 ± 2
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tic real-world conditions of usage. A comparison of two 
platforms (Galaxy S2 and Nexus 7) available by 2013 with 
five different apps yielded an average ±11.8 dB difference 
between reported and calibrated sound levels. In defer-
ence to the controlled studies, they concluded that under 
real-world conditions, smartphones were generally unreli-
able in measuring sound intensity.

The current investigation involving the more recent 
iPhone 6s, Samsung Galaxy S8, and Note 5 phones, along 
with a variety of apps for each platform, reveals consider-
able variability. When tested under quiet conditions using 
the same app (Decibel 10th), the Samsung Note 5 offers a 
lower noise level (±0.5 dB) than the iPhone 6s (±1.5 dB); 
however, this lower measurement noise was offset by the 
fact that compared with the calibration measurement of 
30 dB, the two phones gave very different measures of 
42 dB (iPhone) and 52 dB (Note 5). In fact, a compari-
son of the sound measurements for several different apps 
operating on the iPhone 6s (Table 4) revealed very dis-
cordant measurements simply due to the particular app 
selected. Of the ones tested, Decibel 10th gave the most 
precise sound-level values compared with the BK-Meter 
calibration instrument. The range of measurements for 
a quiet room spanned nearly 30 dB, which is a factor of 
1,000 in acoustic power. For the other end of the acoustic 
range, a rock concert measurement at the same location 
in the arena varied by 20 dB corresponding to a factor of 
100 in power.

Calibration of these measurements poses a challenge 
because, although the measurements obtained with a 
given app and smartphone are linear over the range from 
40 dB to 80 dB (Figure 7), below 40 dB the measurement 
dispersion dramatically increases down to the nominal 
digitization floor of 30 dB. After calibration, the residual 
dispersion in the measurements for the three phone 
models is σ = ±3.3 dB for the Note 5, ±1.6 dB for the 
Galaxy S8, and ±1.6 dB for the iPhone 6s. These disper-
sions appear to be quite small and match the results by 
Brown and Evans (2011). However, without properly com-
paring the measured values for each app/phone combi-
nation against a calibration standard, the data could not 
be corrected for the offsets of −12 dB (Note 5), +5 dB 
(Galaxy S8) and −8 dB (iPhone 6s). This would lead to a 
large systematic noise component for each measurement 
of approximately ±15 dB, which matches the results by 
Robinson and Tingay (2014).

The accuracy of the calibrated measurements between 
±1.6 and ±3.3 dB is clearly a desirable goal for using smart-
phones to make high-quality measurements; however, the 
challenge is that, when combining data from multiple 
observers, you must keep track of each model and app 
being used, and apply a calibration to them based on a 
procedure such as the one described above. After apply-
ing a model-dependent offset, the three models tested 
(Figure 7) gave very nearly the same linear correlation 
with an average slope of 1.07 in the regression, so assum-
ing that this is a common feature of all smartphone mod-
els, we need to establish the offset at only one fiducial 
point to fix the calibration curve according to y = 1.07x 
+ C. The value for C can be established by using the 

smartphone to measure a calibrated sound source (x) so 
that the measured value (y) gives C = y − 1.07x. To within 
an accuracy of about ±5 dB, a convenient calibration level 
could include a very quiet basement room (35 dB) or some 
other convenient reference point that the project devel-
oper establishes before recruiting participants.

Citizen Science Applications
Smartphone sensor utilization follows a common bias 
that favors smartphones as data-gathering camera sys-
tems or social messaging text-based applications. For 
example, projects such as Bugs in our Backyards (https://
www.bugsinourbackyard.org/) has participants photo-
graph unusual insects and upload the images, while Fish 
Watchers (https://www.fishbase.us/FishWatcher/menu.
php) asks participants to record the type of fish, size and 
location. Very few programs actually use smartphone sen-
sors to make measurements. A small number of citizen 
science sensor-based projects have appeared. One straight-
forward application is in the design of student-based 
crowdsourced projects such as those found at Anecdata.
org, specifically Silent Earth and Earth Rotation Detector.

A previous study of smartphones used as radiation 
dosimeters and magnetometers (Odenwald 2019) dem-
onstrated their utility for citizen science projects, and 
in the case of the magnetometers, identified a citizen 
science project, CrowdMag, in which these sensors are 
being used to map Earth’s magnetic field. A prospec-
tive citizen science project is also under development to 
detect geomagnetic storms (Odenwald 2018). In general, 
the use of smartphones to gather quantitative data is still 
in its infancy. A survey of more than 1,600 citizen science 
programs cataloged by SciStarter finds fewer than 50 that 
use smartphones as mobile data-gathering platforms, and 
the majority of these use only the camera and texting 
capabilities to provide project data. With the exception 
of CrowdMag, none of these projects require the calibra-
tion of their data. CrowdMag collects data on the smart-
phone model being used and accesses the smartphone 
magnetometer via its own app software, so that a com-
mon app is used that can be directly calibrated given the 
smartphone model. The other apps use smartphone cam-
era image data and need not be calibrated.

Generally, it is expensive to build a dedicated project 
app with controllable properties, so the opportunity to 
use commercially available, low-cost apps arises as an 
intriguing cost-cutting opportunity for future citizen 
science projects. Odenwald (2019) described how com-
mon magnetometer apps might be adapted for more 
rigorous project applications. The advantage of the 
magnetometer apps is that they all use the same 3-axis 
magnetometer in the smartphone, and the differences 
occur only in the manner of displaying and storing the 
data. The quality of the data remains uniformly high 
when allowance is made for temperature variations and 
the appearance of glitches, which can be eliminated 
by simple adjustments to measurement protocols. As 
described by Odenwald (2019) and implemented by 
CrowdMag, smartphone magnetometers can be used 
successfully in citizen science applications.

https://www.bugsinourbackyard.org/
https://www.bugsinourbackyard.org/
https://www.fishbase.us/FishWatcher/menu.php
https://www.fishbase.us/FishWatcher/menu.php
http://anecdata.org
http://anecdata.org
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For the current light- and sound-level measurements 
the situation is more complicated. When compared with 
calibrated sources and measurement instruments, this 
investigation has found that the sound and illuminance 
values can be considerably discrepant despite the enor-
mous promise of offering millions of mobile sensors from 
which to design future citizen science projects. Although 
sound measurements, when calibrated for the particular 
app being used, can yield accuracies of ±1.5 dB, the diver-
sity of light-metering approaches and apps leads to a more 
challenging calibration process that may be prohibitive 
and yield accuracies of ±12% at illuminances above 5,000 
lx corresponding to full-daylight conditions. The most sig-
nificant difficulty is that the dedicated light sensors used 
by Android phones are front-mounted and corrupted by 
shadowing by the observer, while back-camera meter-
ing leads to large jumps in measured illuminance below 
3,000 lx. Moreover, there is no simple scaling relation-
ship between the reflected and incident illuminance that 
applies over the dynamic range of the metering from 0 to 
500,000 lx. Assuming that the observer can follow a pro-
tocol to compute and report a calibrated illuminance on 
the front end, or that the project developer can track the 
smartphone model and app used and then perform the 
calibration on the back end, what can we do with smart-
phone light and sound meters that have been calibrated?

There have been many studies of ambient sound lev-
els. For example, (Record the Earth 2018; Noise Planet 
2018; Sound Around You 2018) have participants use 
their smartphones to upload recordings of local sounds. 
The National Park Service has also created a mathemati-
cal model of the sound levels across the United States 
to study ambient acoustic conditions primarily in the 
national park system (NPS 2017). With smartphone sound 
sensors and apps such as Decibel 10th, capable of making 
measurements at approximately ±1.5 dB, the opportu-
nity exists for creating citizen science projects in which 
the average person lacking an expensive precision sound 
meter can use their own smartphones to measure sound 
levels with an accuracy comparable to the IEC 60651 Type 
II sound level meter standard, which is the general-pur-
pose grade for field work. Light-metering applications are 
far more problematic.

It is not expected that there are many citizen science 
applications for which ambient light measurements at 
±12% would be suitable; however, these sensors might 
be useful in informal education and crowdsourcing 
applications.

The Sunlight Tracker project at Anecdata.org is a simple 
application of daylight photometry to measure the sea-
sonal and latitudinal change in noontime sunlight levels. 
Participants use one of the light-meter apps described in 
this paper to measure the clear-sky, noontime light levels 
under direct sunlight conditions on a series of days during 
the year. These measurements collectively create a global 
map of the seasonal change in insolation in absolute lx 
units due to the change in the elevation of the sun above 
the horizon at different latitudes throughout the year.

In 2019, the Silent Earth project was developed on the 
Anecdata.org platform and uses smartphone technology to 
make spot measurements of the minimum sound volume 

in a participant’s environment. This project is unique 
because, although current projects make sound record-
ings, none of them attempt to measure an average sound 
volume in decibels. For instance, no one has measured the 
sound levels from the Sahara Desert, in the tundra above 
the Arctic Circle, or from the top of the Eiffel Tower.

The long-term goal of Silent Earth is to create an inter-
esting geographic database of ambient sound levels in 
the nominally quietest places to which participants have 
access through their travels. There may be some longer-
term scientific value in this database that would elevate 
it to a traditional citizen science project, such as compar-
ing it with the NPS national sound map. Silent Earth is 
currently partnering with the NPS to map the sound lev-
els in the national park system. Meanwhile, Silent Earth 
will stimulate personal inquiry into a question that many 
participants and communities might like an answer to: 
Where can I find some peace and quiet?

Conclusions
Based on the calibrated results from a variety of apps and 
platforms, the direct use of smartphone light and sound 
sensor systems for conducting some types of citizen 
science experiments is warranted if adjustments to the 
recorded data are made using a small set of calibration 
curves. Properly calibrating the data can result in a sig-
nificant decrease by, in some instances, an order of magni-
tude in the measurement uncertainty.

Light intensity can be measured after calibration to an 
accuracy of ±12% under high-illuminance conditions but 
there is significantly worse performance below 3,000 lx. 
Sound measurements have a random noise component of 
approximately ±1.5 dB, but systematic errors that are plat-
form dependent can be as high as ±15 dB. These systematic 
shifts can be removed on a model-to-model basis and pre-
serve the apparently linear relationship between the smart-
phone and professional sound scales from 40 to 90 dB.

Overall, given the various formal and informal studies 
by previous investigators, my results were better than 
expected. When proper measurement and calibration 
protocols are applied, smartphone sensors can gener-
ate good-quality data that compare reasonably well with 
professional-grade systems, but at far lower cost. This may 
open the door for citizen science and crowdsourced appli-
cations, but the quality of the calibrated measurements 
appears to be generally more suitable for informal K–12 
educational activities.
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