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Citizen science (CS) projects engage citizens for research purposes and promote individual 
learning outcomes such as scientific reasoning (SR) skills. SR refers to participants’ skills to 
solve problems scientifically. However, the evaluation of CS projects’ effects on learning 
outcomes has suffered from a lack of assessment instruments and resources. Assessments 
of SR have most often been validated in the context of formal education. They do not 
contextualize items to be authentic or to represent a wide variety of disciplines and 
contexts in CS research. Here, we describe the development of an assessment instrument 
that can be flexibly adapted to different CS research contexts. Furthermore, we show 
that this assessment instrument, the SR questionnaire, provides valid conclusions about 
participants’ SR skills. We found that the deep-structure and surface features of the 
items in the SR questionnaire represent the thinking processes associated with SR to a 
substantial extent. We suggest that practitioners and researchers consider these item 
features in future adaptations of the SR questionnaire. This will most likely enable them to 
draw valid conclusions about participants’ SR skills and to gain a deeper understanding of 
participants’ SR skills in CS project evaluation.
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INTRODUCTION

Growing numbers of citizen science (CS) projects engage 
citizens in scientific research not only to collect and process 
large data sets (e.g., Zooniverse projects; Cox et al. 2015) 
but also to promote individual learning outcomes (ILOs) 
(Jordan, Ballard, and Phillips 2012). Enhanced participation 
of citizens in scientific research ultimately should promote 
not only knowledge of science but also science inquiry skills 
that can include skills related to scientific reasoning (SR) 
(Phillips et al. 2018). SR skills refer to the ability to solve a 
scientific problem in a particular situation by applying a 
set of scientific skills and knowledge, for example, to form 
hypotheses (Lawson et al. 2000; Bao et al. 2009). While 
science inquiry skills comprise all abilities that are required 
for tasks in the scientific endeavor, only some skills, such as 
designing investigations and analyzing data, are related to 
SR (Stylinski et al. 2020). Some science inquiry skills, such 
as identifying a species or taking measurements for data 
collection, are more common to CS projects. Fewer CS 
projects require skills that are related to SR, such as forming 
hypotheses, because only stronger commitment may 
facilitate those skills (NASEM 2018). Hence, SR skills comprise 
a subset of skills that are less common to CS projects than 
other science inquiry skills (Stylinski et al. 2020). In CS 
projects that involve participants in inquiry approaches for 
learning (e.g., Aristeidou et al. 2020), SR skills might foster 
the achievement of other ILOs (Edwards et al. 2017), for 
example, behavioral beliefs (Bruckermann et al. 2021).

Resources for evaluating CS projects’ ILOs are scarce 
(Bonney et al. 2016), and there is a need for reliable and 
valid instruments to assess SR skills (Stylinski et al. 2020). 
Notably, in the evaluation of ILOs in CS, there is (1) a lack of 
clarity concerning the constructs, and (2) a lack of resources, 
time, and social science expertise for assessment (Phillips 
et al. 2018). While overarching evaluation frameworks 
regarding the assessment of ILOs exist (e.g., DEVISE; Phillips 
et al. 2014), only a few instruments to assess science inquiry 
skills are available, and SR skills are mentioned in only one 
percent of the literature reviewed (Stylinski et al. 2020). 
Therefore, the evaluation of SR skills in CS projects less often 
relies on standardized tests than on surveys of self-reported 
confidence in performing the SR skills (see overview in 
Stylinski et al. 2020)—despite validity concerns regarding 
self-reports (Critcher and Dunning 2009). To ensure that 
conclusions that are drawn from evaluations of ILOs in CS 
are valid, assessment instruments that do not rely solely on 
self-reports should be developed (Phillips et al. 2018).

With regard to assessing SR skills, several instruments 
have been proposed for formal education contexts 
(Hammann et al. 2008; Hartmann et al. 2015; Krell 2018; 
see overview in Opitz, Heene, and Fischer 2017). In most 

of those instruments, the items typically include some 
problems or background stories to contextualize the 
particular assessment, because SR depends on knowledge 
of the respective discipline (Fischer et al. 2014). However, 
there is little evidence for the validity of the instruments 
in the formal education context (Opitz, Heene, and 
Fischer 2017). Furthermore, the instruments typically do 
not contextualize items to represent various disciplines 
and contexts in CS research. The development of valid 
assessment instruments in CS projects faces the challenge 
that CS occurs in various contexts (e.g., astronomy, 
medicine, and biology; Follett and Strezov 2015). To 
develop assessment instruments appropriate to the variety 
of CS project contexts, the instruments often have to be 
purposefully designed for the specific project (Cronje et al. 
2011).

The purpose of the study reported here is to describe 
the development of a multiple-choice scientific reasoning 
questionnaire (hereafter SRQ) that can be flexibly adapted 
to the different contexts of CS research. More specifically, 
assumptions about the cognitive processes underlying SR and, 
thus, about the participants’ processing of the items, guided 
the development of the SRQ. Empirically, this study provides 
evidence that item features requiring specific cognitive 
processes of SR significantly contribute to the difficulty of 
multiple-choice items. Further, CS practitioners might benefit 
from a validated assessment instrument that could provide 
insights into the SR skills of CS project participants.

THEORETICAL BACKGROUND

The present study refers to three SR skills—forming 
hypotheses, testing hypotheses, and analyzing data—and  
takes a cognitive perspective on SR (Klahr and Dunbar 1988).  
The SR skill of forming hypotheses requires individuals to 
understand which hypotheses can be tested by a particular 
research design. Testing hypotheses requires individuals to 
develop a research design that is valid to test a particular 
hypothesis. Analyzing data refers to the skill of drawing a valid 
conclusion based on a particular research design and the data 
obtained from this research design. The cognitive perspective 
on SR assessments adopted in this study aims to explore 
individuals’ thinking processes to make SR skills accessible 
for assessment purposes. The sociocultural perspective, in 
contrast, would provide a rationale on how SR historically 
developed to be a cultural product in different contexts (e.g., 
Kind and Osborne 2017). Our decision to adopt a cognitive 
perspective on SR assessments was further motivated by 
both the lack of construct clarity in previous research and the 
lack of resources available for developing valid assessments 
of participants’ SR skills (Stylinski et al. 2020).

https://doi.org/10.5334/cstp.309
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ITEM FEATURES AND COGNITIVE PROCESSES IN 
ASSESSMENTS OF SR
Assessments should represent the processes and strategies 
necessary for participants to perform on tasks that test 
a psychological construct (this is known as construct 
representation; e.g., Embretson 1983). SR skills depend on 
cognitive processes—such as identifying the variables under 
investigation (i.e., information encoding and retrieval)—as  
well as on the use of cognitive strategies—such as controlling 
several variables to avoid biases in the investigation (e.g., 
the control-of-variables strategy) (Morris et al. 2012). Items 
that assess SR skills usually include a scientific problem 
that can be solved by identifying the relevant variables 
and controlling other variables to facilitate unbiased 
conclusions. Previous research on SR questionnaires has 
explored how particular item features—such as the SR skill 
being investigated, the number of independent variables, 
and the research context—influence the thinking processes 
involved in the identification and control of variables (Krell 
2018; Mannel, Walpuski, and Sumfleth 2015). In the 
development of SR items, researchers have to account for 
those item features so that the SR assessment instrument 
represents those cognitive processes and allows for valid 
interpretations of test scores (Hartig and Frey 2012). If the 
different item features are accounted for, it is possible to 
calculate the influence of each item feature in relation 
to the items’ overall difficulty. Significant sources of item 
difficulty that are not related to the psychological construct 
pose a threat to validity because they suggest that other 
abilities are needed to solve the item in addition to the 
intended abilities. Hence, the identification of such sources 
of item difficulty has the potential to improve the validity 
of assessments. Moreover, the identification of sources 
of item difficulty that are related to the psychological 
construct can guide item development (Messick 1995).

In the construction of valid assessments, previous 
research distinguished between two kinds of item features 
(Opfer, Nehm, and Ha 2012). First, deep-structure item 
features are held constant across all items because they 
aim to assess the cognitive processes and strategies related 
to SR, such as the identification and control of variables. 
Second, item surface features embed items in specific 
contexts of CS research designs (e.g., Follett and Strezov 
2015). Individuals with high-level SR skills master the 
assessment despite the varying contexts (i.e., item surface 
features), but individuals with low-level SR skills are more 
likely to be distracted by such item surface features (Opfer, 
Nehm, and Ha 2012). If item features and the related 
cognitive processes are identified, it is possible to explain 
how an assessment instrument works, and this contributes 
to construct validity (Fischer 1995, 2005; Hartig and Frey 
2012). Hence, we explore how different item features 

that indicate the cognitive processes required to solve 
the item contribute to item difficulty in SR assessments. 
From previous research, we identified two deep-structure 
item features that are essential for the assessment of SR: 
(1) the feature that one of the three different SR skills (i.e., 
forming hypotheses, testing hypotheses, and analyzing 
data) is required to solve the item, and (2) the feature 
that the number of independent variables (i.e., one or two 
independent variables) has to be accounted for to solve the 
item. Furthermore, three item surface features that might 
distract participants from successfully applying their SR 
skills were examined: research context, text complexity, 
and the use of specialist terms.

The three SR skills of forming hypotheses, testing 
hypotheses, and analyzing data are deep-structure item 
features—they relate to the cognitive processes and 
strategies of identifying and controlling variables—and 
have been shown to significantly influence item difficulty 
(Hammann et al. 2008; Mannel, Walpuski, and Sumfleth 
2015; Krell 2018). Based on comparisons of item difficulties 
in the formal education context, research suggested 
that the SR skill of testing hypotheses requires different 
knowledge than forming hypotheses and analyzing data: 
the SR skills of forming hypotheses and analyzing data seem 
to require profound domain-specific content knowledge, 
while the SR skill of testing hypotheses is more closely, 
but not exclusively, related to knowledge of the processes 
(Hammann et al. 2008). Furthermore, previous research 
indicates that assessment items on forming hypotheses 
and testing hypotheses typically presuppose one part of the 
inquiry as given (i.e., the items provide either the research 
design or the hypothesis). For example, assessment items 
on testing hypotheses provide a hypothesis and ask the 
participant to propose a valid research design to test it. 
Items on data analysis, however, require participants to 
relate two parts of the inquiry process, that is, the research 
design and the observations (Krell 2018). In the formal 
learning context, studies revealed that assessment items 
on forming hypotheses and testing hypotheses are typically 
easier to solve for participants than assessment items on 
analyzing data (e.g., Krell 2018). In CS projects, all three SR 
skills are neither easy for participants nor common so that 
we aimed at comparing the item difficulties for the three 
SR skills in the informal education context of a CS project. 
Testing hypotheses will serve as the reference category in 
our analysis, that is, the item difficulty of the SR skills of 
forming hypotheses and analyzing data will be compared 
against it.

Item complexity is the second deep-structure item 
feature we identified. Item complexity in SR assessments 
is defined as the number of variables that individuals need 
to keep in mind to answer an item, that is, whether the 
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hypothesis, the research design, or the data refer to one 
or to two independent variables (Mannel, Walpuski, and 
Sumfleth 2015). Thinking of more than one independent 
variable at once increases the cognitive load, that is, the 
amount of information that individuals need to process 
(Kauertz et al. 2010). Therefore, the item complexity 
contributes to the item difficulty in an assessment of SR 
skills (e.g., Kauertz et al. 2010; Krell 2017). 

Although the investigation of hypotheses as one form 
of scientific reasoning spans the sciences, SR skills must be 
applied in the various contexts of research. The research 
context is considered an item surface feature because 
individuals can apply their SR skills to different contexts, 
while the underlying thinking processes of variable 
identification and control remain the same. Previous 
research has indicated that SR also depends on domain-
specific knowledge (Fischer et al. 2014). Individuals need 
to have domain-specific knowledge of the respective 
research context to identify the investigated variables 
and to represent them in a mental model (Morris et al. 
2012). Domain-specific knowledge enables the adequate 
representation of variables that are relevant to problem-
solving (Fischer et al. 2014). Especially unfamiliar contexts 
have been shown to make items more difficult to solve (Le 
Hebel et al. 2017). Hence, the context of the items on SR 
also contributes to the items’ difficulty (Krell 2018).

Two further item surface features that can contribute 
to the items’ difficulty are text complexity and the use 
of specialist terms. In the natural sciences, language 
is determined by its functional grammar, including 
specialist terms and complex sentences (Fang 2006). 
In SR assessments, items typically include a text-based 
description of a problem that can be solved by applying 
SR skills. The problem description often employs specialist 
terms and words and sentences with an above-average 
length. These constructs are due to the functional grammar 
that is used in the language of the natural sciences. The 
length of words and sentences (i.e., text complexity) and 
the use of specialist terms are both considered item surface 
features as they influence the readability of scientific texts. 
Individuals have to follow the grammar in the text and 
understand the specialist terms to be able to represent 
the problem mentally. Both text complexity and specialist 
terms seem to influence the item difficulty (Stiller et al. 
2016; Krell, Khan, and van Driel 2021).

This study describes the development of a flexibly 
adaptable SRQ that systematically considers two deep-
structure item features (the skills of forming hypotheses, 
testing hypotheses, and analyzing data; the two levels of item 
complexity) and three item surface features (the research 
context; the text complexity; the use of specialist terms). We 
compared the fit of statistical models on SR skills to provide 

empirical evidence for the item features’ contribution to 
item difficulty. To do so, we first tested a descriptive Rasch 
model (one-parameter logistic model [1PLM]) that does not 
differentiate between the item features. Then, we compared 
the descriptive Rasch model against a basic linear logistic test 
model (LLTM) that accounts for three of the item features, 
that is, the SR skills, the levels of complexity, and the research 
contexts, and against an extended LLTM that additionally 
takes text complexity as well as specialist terms into account. 
Our research provides valuable insights for the increasing CS 
community and researchers who aim to assess participants’ 
SR skills in CS projects by suggesting a blueprint and guidelines 
for the development of SRQs, using item features that can be 
adapted to different CS-relevant contexts.

METHODS

The study reported here is part of an interdisciplinary research 
project on CS, which comprised three CS projects ([1] urban 
wildlife ecology, [2] urban bat ecology, and [3] urban air 
pollution) in two large cities (Berlin and Leipzig) in the east 
of Germany. Each CS project involved several time-limited 
runs of data collection and analysis per year (hereafter field 
seasons). Although the three CS projects differed in their 
research context, all projects followed the same goal; that 
is, the examination of distribution patterns. To investigate 
participants’ SR skills, we developed an SRQ accounting 
for the overarching factors of the underlying construct of 
SR skills (i.e., forming hypotheses, testing hypotheses, and 
analyzing data) while addressing the differing contexts of 
research (i.e., wildlife, bats, and air pollution). We report 
on data from two field seasons of one CS project (urban 
wildlife ecology) in the city of Berlin in which we assessed 
participants’ SR skills. We chose to assess SR skills in only 
two field seasons of the urban wildlife ecology CS project 
because we did not want to overburden the participants by 
asking them to answer several questionnaires.

INSTRUMENT DEVELOPMENT
We applied an established blueprint for the systematic 
development of a multiple-choice SRQ (Krell 2018). The 
blueprint accounts for two deep-structure item features 
by addressing three skills of SR and two levels of item 
complexity. Furthermore, the blueprint allows for the 
contextualization in our particular CS projects (i.e., on 
wildlife ecology, bat ecology, and air pollution) by adapting 
the surface features to different research contexts. Finally, 
the blueprint guides the structure of the language (i.e., text 
complexity and specialist terms) and the figures (example 
in Figure 1; see Supplemental file 1: Appendix 1 for the 
blueprint used in this study).
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To adapt the blueprint and contextualize it in authentic 
CS research, experts first identified research designs 
within actual research on the respective topics (e.g., flight 
distance of urban wild boars: Stillfried et al. 2017; effect 
of artificial light at night and tree cover on bats: Straka 
et al. 2019). Second, the experts reviewed the research 
regarding its central variables, hypotheses, design, and 
the data obtained from this research. Third, we adopted 
the respective variables of the chosen research contexts 
to each of the three SR skills (i.e., forming hypotheses, 
testing hypotheses, and analyzing data). To differ between 
item complexities, we varied the number of independent 
variables under consideration by using two levels, that is, 
the consideration of one or two independent variables (i.e., 
low and high item complexity). The SRQ comprised three 
contexts (wildlife ecology, bat ecology, and air pollution) 
for three SR skills (forming hypotheses, testing hypotheses, 
analyzing data) and two item complexity levels (one 
independent variable and two independent variables). The 

complete crossing of the three contexts, three SR skills, and 
two complexity levels resulted in 3 × 3 × 2 = 18 items in 
total (Table 1).

With regard to the remaining two item surface features, 
we did not purposefully vary the length of words and 
sentences or the specialist terms between the items; 
the blueprint aimed to keep the complexity of language 
comparable for all items. All 18 items had a comparable 
structure (see example in Figure 1). First, the text stem 
introduced a research design with all relevant dependent 
and independent variables. Second, the picture represented 
the setup of this research and named all independent 
variables. Third, the question prompted participants to 
provide a valid hypothesis, suggest an additional setup, or 
draw a valid conclusion. Fourth, each item provided four 
answer options.

Although we aimed to keep the complexity of language 
comparable, the different research contexts required using 
words and terms of different length and familiarity in the 

Figure 1 Example of the structure of an item in the blueprint (deep-structure item feature: analyzing data, high item complexity) and 
its adaptation for Item 6 in the SRQ (item surface feature: context of urban wildlife ecology). Color coding represents the corresponding 
variables in the blueprint (left) and the example (right). Underlined words are specialist terms in this example.
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assessment items. We analyzed the text complexity and 
the use of specialist terms to control for their effects on 
item difficulty. To monitor the influence of text complexity 
on item difficulty, we calculated the Flesch Reading Ease 
Index (FRE; Flesch 1948) in its German adaptation that 
accounts for the mean sentence length and the mean 
number of syllables per word. For the FRE, values below 
60 indicate a high text complexity, that is, sentences are 
longer and a word has more syllables. Furthermore, we 
counted the percentage of specialist terms (ST) in every 
item because the ability to identify the variables being 
investigated (i.e., the cognitive process of information 
encoding) also depends on knowledge of specialist terms. 
We formed a list of specialist terms that are not commonly 
used in everyday language (e.g., transect, particulate 
measure, flight distance) and consistently applied it to all 
items. The number of specialist terms varied across the 18 
items depending on the respective research contexts. The 
less tangible research context of air pollution used more 
specialist terms than the research contexts of wildlife 
ecology and bat ecology. More than seven specialist 
terms in 100 words (ST > 7%) are considered cognitively 
demanding (Kulgemeyer and Starauschek 2014).

PARTICIPANTS
Participants were recruited via media sources such as radio, 
newsletter, or posters in public places. They could apply to 
participate in one of the two field seasons of the CS project. 
Given the diversity of sociodemographic factors within 
the city’s districts and to ensure an equal distribution of 
participants across the city, citizens were selected for 
participation based on the location where they lived. The 
participants were evenly distributed across the districts 
of the city of Berlin by the design of this study. N = 374 
citizens participated, of which 198 were identified as being 
female and one as having a non-binary gender. Their mean 
age was M = 53.22 (SD = 11.92; range: 25–81). As in many 

CS projects, this sample was well educated, with most 
participants holding an upper secondary school certificate 
(82.6%) and fewer participants holding a certificate from 
the upper secondary vocational track (15.5%). Furthermore, 
more than half of the participants held a university degree 
(59.9%) and some also even had a doctoral degree (11.5%).

PROCEDURE
To participate in one of the two field seasons, participants 
signed up on an online platform. For two months, the 
participants formed an online community to share and 
analyze the data they had collected, as well as to discuss 
their findings with other participants. Participants filled in 
the questionnaire before and after they took part in the field 
season. In this study, we report on data that was collected 
from two field seasons, one in fall 2018 and one in spring 
2019. In detail, we analyzed the answers of participants 
to the SRQ before the project. The reason for analyzing 
the data (i.e., participants’ answers to the questionnaire) 
collected before participation in the CS project was that this 
assured that the SR skills assessed had not been explicitly 
trained by participation in the CS project. Participants gave 
their informed consent for this study, and an external 
ethics board approved the SRQ.

DATA ANALYSIS
To estimate how the different item features contributed to 
the items’ difficulty, we applied the LLTM. The LLTM assumes 
that item difficulty is a linear combination of the different 
item features (Fischer 1995, 2005). The LLTM belongs to 
the Rasch models, a family of established psychometric 
models applied in psychological and educational research 
(Embretson and Reise 2000). The family of Rasch models 
includes descriptive psychometric models, such as the 
1PLM, which allows for the holistic estimation of individual 
person ability (qs) and item difficulty (bi) parameters. In the 
1PLM, it is assumed that the probability of a correct item 

ITEM COMPLEXITY (NUMBER OF INDEPENDENT VARIABLES)

LOW = ONE VARIABLE HIGH = TWO VARIABLES

Scientific reasoning skill

Forming hypotheses Wildlife ecology (item 1)
Bat ecology (item 7)
Air pollution (item 13)

Wildlife ecology (item 4)
Bat ecology (item 10)
Air pollution (item 16)

Testing hypotheses Wildlife ecology (item 5)
Bat ecology (item 11)
Air pollution (item 17)

Wildlife ecology (item 2)
Bat ecology (item 8)
Air pollution (item 14)

Analyzing data Wildlife ecology (item 3)
Bat ecology (item 9)
Air pollution (item 15)

Wildlife ecology (item 6)
Bat ecology (item 12)
Air pollution (item 18)

Table 1 Specification of item features for item numbers 1–18 in the development of the SRQ.

https://doi.org/10.5334/cstp.309
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response depends only on qs and bi (Embretson and Reise 
2000):

   
 

exp
.

1 exp
s i
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s i

P X
 
 

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In contrast to descriptive models such as the 1PLM, 
explanatory models consider different item features to 
estimate each feature’s influence analytically (Wilson, 
Boeck, and Carstensen 2008). From this perspective, the 
LLTM can be seen as an item explanatory model because 
it replaces the bi parameter with a linear combination of 
the basic parameters ak :     1( )k ki

N
ik  (Fischer 1995). 

The LLTM splits up the item difficulty of whole items (i.e., 
bi parameter in the 1PLM) into the individual contribution 
of different item features to the item difficulty (i.e., ak 

parameters). Hence, if an LLTM can be shown to fit the 
given data, the estimated parameters ak provide a measure 
of each item feature’s contribution—such as the different 
SR skills, the levels of item complexity, and the research 
context—to the item difficulty.

To evaluate the model fit of an LLTM, a two-step 
procedure is proposed: First, the 1PLM has to fit “at least 
approximately” (Fischer 2005, p. 509) to the data because 
further decomposition should concern a unidimensional 
measure of SR skills. Second, the decomposition of bi 
needs to be checked for empirical validity. For this purpose, 
item difficulty parameters estimated in the 1PLM and the 
LLTM can be compared (e.g., graphically or by calculating 
the Pearson correlation), assuming that they positively 
correlate (Baghaei and Kubinger 2015). Furthermore, the 
Akaike information criterion (AIC), the Bayesian information 
criterion (BIC), and the log-likelihood difference test can be 
applied to compare the fit of both models, as well as the 

plausibility of different LLTMs (Fischer 2005; Wu, Adams, 
and Wilson 2007). The AIC and BIC are relative fit indices 
that allow model comparison, but they do not allow an 
absolute evaluation of model fit. The higher the AIC and 
BIC values, the more the data deviates from the specified 
model (Wu, Adams, and Wilson 2007). In the present study, 
we used the software ACER Conquest (Wu, Adams, and 
Wilson 2007) and the R package eRm (Mair and Hatzinger 
2007) for parameter estimation.

RESULTS
SPECIFICATION OF A DESCRIPTIVE RASCH 
MODEL (1PLM)
We specified a one-dimensional 1PLM that reflected the 
view of SR as a general ability without disentangling the 
influence of different item features, for example, the SR 
skills or the text complexity. Hence, the 1PLM provides 
an estimation of item difficulty without an account of 
specific item features. The 1PLM showed appropriate mean 
square (MNSQ) item-fit statistics (0.7 ≤ MNSQ ≤ 1.8; not 
distorting measurement; Wright and Linacre 1994). The 
item separation reliability was very high (rel.SEP = .98) and 
the person reliability was good (rel.EAP/PV = .74) compared 
with previous SR assessments (Hartmann et al. 2015: 0.54; 
Mannel, Walpuski, and Sumfleth 2015: 0.76; Krell 2018: 
0.64).

In the Wright map in Figure 2, we inspected the distribution 
of item difficulties in the SRQ and the distribution of person 
ability in our sample on the same linear scale (equal-
interval logits) as computed based on marginal maximum 
likelihood (MML) estimation. Higher logit values indicate 
a higher person ability (see Figure 2; green dots represent 

Figure 2 Wright map of N = 374 participants’ scientific reasoning (SR) abilities (marginal maximum likelihood [MML] estimation) and item 
difficulties (logits) for items 1–18 in the one-parameter logistic model (1PLM). Table 1 presents the item features for items 1–18 that were 
varied on purpose.
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distribution of participants). The estimated person ability 
followed a Gaussian distribution. Furthermore, higher logit 
values indicate a greater item difficulty. For example, Item 
4 (i.e., forming hypotheses with two independent variables 
in the context of urban wildlife ecology; see Supplemental 
file 2: Appendix 2) was the most difficult item with a 
difficulty of 1.25 logits (see Figure 2, blue triangles). Based 
on their difficulty, the items were evenly scattered across 
the person ability in our sample.

SPECIFICATION OF AN EXPLANATORY RASCH 
MODEL (LLTM)
To further explain the difficulty of items, we specified two 
LLTMs, that is, a basic model and an extended model (see 
Table 2 for item features that are included in the models). 
The smaller values obtained from the AIC and the BIC 
suggested a better fit between model and data for the 
extended model compared with the basic model (Table 2), 
as did the log-likelihood difference test (p < .001); however, 
the extended model still showed an inferior fit compared 
with the 1PLM based on both the smaller information 
criteria AIC and BIC and the significant log-likelihood 
difference test (p < .001). These findings indicate the least 
deviation between model and data for the 1PLM, followed 
by the extended model and the basic model.

The item difficulty parameters estimated in the 1PLM 
positively correlated with those estimated in the basic 
model (r = .58, p = .011, 95% CI [0.51, 0.64]) and the 
extended model (r = .62, p = .006, 95% CI [0.55, 0.68]). This 
means that about 34% (basic model: 95% CI [26, 41]) or 
39% (extended model: 95% CI [30, 46]) of the individually 
estimated item difficulties in the 1PLM can be explained 
with the respective parameters specified in the LLTMs. The 
graphical model tests of the basic model in Figure 3a and 
the extended model in Figure 3b reveal that the items were 
scattered around the 45° line moderately well.

The estimated ak parameters (Table 3) showed that 
all item features contributed significantly to the items’ 
difficulty because their 95% CI did not include zero. For 
example, the SR skills of forming hypotheses and analyzing 
data seemed to be rather difficult (i.e., relatively high 

positive ak parameter) compared with testing hypotheses, 
which served as the reference category in our comparison. 
As already found in the item parameters of the 1PLM, a 
higher item complexity reduced item difficulty (i.e., negative 
ak parameter). The consideration of text complexity and 
specialist terms (item surface features) in the present 
study reduced the estimated effect of the context on item 
difficulty: The ak parameters for the contexts of wildlife and 
of bats were smaller in the extended model compared with 
the ak parameters for the contexts in the basic model. This 
indicates that the difficulty of different research contexts 
is to some degree related to the use of specialist terms 
and the complexity of the text that is used to describe the 
research context.

DISCUSSION

This research investigated the influence of item features on 
item difficulty in a scientific reasoning questionnaire (SRQ). 
The identification of item features that influence item 
difficulty is crucial in the assessment of the SR skills of CS 
participants. From the item features, it is possible to infer 
the thinking processes related to SR skills and to determine 
whether the SRQ assesses what it is supposed to assess 
(i.e., to obtain validity evidence for the assessment of SR). 
In line with our assumptions, we were able to provide 
statistical evidence on item features (in the SRQ) that 
represent the thinking processes in relation to SR such as 
forming hypotheses. The variance that is explained by the 
item features indicates that the item features stimulate 
thinking processes, for example, with regard to hypotheses 
formulation. The item features we proposed to be relevant 
for SR skills influence the item difficulty and hence could 
be used to represent participants’ SR skills. Furthermore, we 
showed how deep-structure item features, namely three 
SR skills (i.e., forming hypotheses, testing hypotheses, and 
analyzing data) and two levels of item complexity (i.e., one 
and two independent variables), contribute to the items’ 
difficulty. In addition, we found that the three research 
contexts, the text complexity, and the use of specialist 

SR SKILLS;  ITEM COMPLEXITY; 
RESEARCH CONTEXT

TEXT COMPLEXITY; 
SPECIALIST TERMS

ESTIMATED 
PARAMETERS

DEVIANCE AIC BIC

1PLM 19 6,737 6,775 6,849

LLTM (basic model) X 5 7,856 7,866 7,886

LLTM (extended model) X X 7 7,803 7,817 7,845

Table 2 Model-fit indices of the Rasch models specified in the present study. 

Note: The “X” marks which item features are included in the respective model for analysis. SR: scientific reasoning; AIC: Akaike 
information criterion; BIC: Bayesian information criterion; PLM: parameter logistic model; LLTM: linear logistic test model.
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terms (i.e., item surface features) influence the items’ 
difficulty. We were able to establish the item features 
that are crucial in SR assessment instruments to provide 
valid conclusions. The SR skills in the SRQ, however, do 
not equal the variety of science inquiry skills that might 
be required in other CS projects, such as identification of 
species. The systematic identification of item features that 
contribute to item difficulty in the SRQ provides guidelines 
for further flexible adaptation to the variety of CS contexts. 
Furthermore, it showcases a method to investigate item 
features in formal tests of science inquiry skills.

Our results corroborate previous research on the 
validity of SRQs by considering both the deep-structure 
item features and the item surface features of SR (i.e., SR 

skills, item complexity, and research context: Hammann et 
al. 2008; Stiller et al. 2016; Krell 2018). Furthermore, our 
results expand previous validity evidence that has been 
found for SR assessments in formal education (Hartmann 
et al. 2015; Stiller et al. 2016) to a sample of CS participants. 
In line with previous research (Stiller et al. 2016; Krell 2018), 
our explanatory modeling of item features explained a 
significant amount of the variance in item difficulty in the 
SR assessment. Our results from the basic model indicate 
that the item features accounted for 34% of the variance 
in participants’ answers in the SR assessment (large effect: 
R² > .25; Hartig and Frey 2012). Previous validation studies 
of SR assessments explained comparable amounts of 
variance (43% for secondary school students: Krell 2018; 

Figure 3 Graphical test of (a) the basic model and (b) the extended model that compares the item difficulties (logits) for items 1–18 
between the descriptive one-parameter logistic model (1PLM) Rasch model (x-axis) and the explanatory linear logistic test model (LLTM) 
Rasch model (y-axis).
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32% for university students: Stiller et al. 2016) despite 
validating the assessments in more homogenous samples 
with regard to participants’ age range and formal training 
in SR. The substantial effect size found in our study 
indicates that the item features represent SR and that the 
interpretation of test scores to draw conclusions about the 
SR skills of participants in this sample of citizen scientists 
is, therefore, valid to a considerable extent (Hartig and 
Frey 2012). Adapting the SRQ for further research will 
provide other researchers with valid assessment scores 
if they account for the item features presented here in 
their questionnaires. Although validity is not a stable 
characteristic of an assessment instrument as it depends on 
the specific sample and assessment situation, accounting 
for item features makes it more likely that other researchers 
will reproduce our findings in their sample. The adaptation 
to other CS samples is feasible because our findings provide 
evidence that the item features explained an amount of 
variance in the assessment of SR comparable to the results 
from the samples of secondary school students and 
university students. The adaptation to participants in a CS 
project and the contextualization in research designs from 

different disciplines did not pose a threat to the validity 
of the conclusions about participants’ SR skills that were 
drawn from the assessment instrument.

Regarding the deep-structure item features in SR 
assessments, our findings correspond to previous research on 
the influence of SR skills and item complexity (Hammann et 
al. 2008; Mannel, Walpuski, and Sumfleth 2015; Krell 2018). 
However, our findings extend previous research concerning 
the effects of item surface features, such as research 
contexts that better represent CS research as well as text 
complexity and specialist terms. Considering text complexity 
and specialist terms, the extended model explained another 
5% of variance (39%). Furthermore, adding text complexity 
and specialist terms as item features to the basic model 
influenced the previously tested contribution of the research 
context in the extended model. We discuss the effects of the 
different item features in the following.

The research context matters in the assessment of SR in 
CS projects because applying SR skills in different contexts 
affects the item difficulty. When assessing SR skills in the 
context of a particular project, the participants’ scores might 
not be comparable to participants’ scores in CS projects that 

BASIC MODEL EXTENDED MODEL

ak SEak
CI95% ak SEak

CI95%

Research context

Air pollution1 — — — — — — — —

Wildlife (1 = yes) 1.04 0.07 1.18 0.91 0.69 0.09 0.86 0.52

Bats (1 = yes) 0.58 0.07 0.72 0.44 0.43 0.08 0.58 0.28

Scientific reasoning skill

Testing hypotheses1 — — — — — — — —

Forming hypotheses (1 = yes) 0.43 0.07 0.57 0.29 0.34 0.07 0.48 0.19

Analyzing data (1 = yes) 1.23 0.07 1.37 1.09 1.23 0.07 1.37 1.08

Item complexity (number of independent variables)

Low1 — — — — — — — —

High (1 = two variables) −0.21 0.06 −0.10 −0.32 −0.35 0.07 −0.22 −0.47

Text complexity

Low1

High (1 = FRE < 60) — — — — −0.46 0.08 −0.31 −0.61

Specialist terms

Low1 — — — — — — — —

High (1 = ST > 7%) — — — — −0.29 0.07 −0.16 −0.43

Table 3 Estimated  parameters in the LLTMs with standard error (SE) and confidence interval (CI).

Note: FRE: Flesch Reading Ease Index; ST: specialist terms.

1 We compared estimated ak parameters with the values of this reference category.
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probed their SR skills in another context. For participants, 
SR might be more difficult in some CS projects than in 
others, depending on the context. Our results build on 
previous findings on SR item contextualization in research 
designs from school curricula (e.g., Le Hebel et al. 2017; 
Krell 2018) and extend them to research designs that are 
more authentic for CS (e.g., wildlife ecology). Although we 
tested the same SR skills in all items, the varying contexts in 
which the SR skills were applied affected the item difficulty. 
We suggest that the development of SR assessments in CS 
projects should account for the different research contexts 
in the items because knowledge of the respective research 
domain is likely to influence the item difficulty.

The item features SR skills and item complexity 
contributed to the items’ difficulty, in line with previous 
research (Hammann et al. 2008; Mannel, Walpuski, and 
Sumfleth 2015; Krell 2018). For participants in CS projects, 
questions are difficult to answer depending on the particular 
SR skill and the item complexity. Questions on the SR skills 
of analyzing data from a given research design and forming 
a hypothesis are more difficult than questions on the SR skill 
of testing hypotheses. In line with previous research, we 
assume that testing hypotheses probably requires stronger 
procedural knowledge, whereas forming hypotheses 
and analyzing data rely more heavily on domain-specific 
content knowledge (Hammann et al. 2008). Our results 
show that even without formal training, the items on 
some SR skills, such as hypotheses testing, are more 
easily mastered by participants in CS projects than others. 
Therefore, when evaluating SR skills, researchers might 
find more pronounced individual learning outcomes for SR 
skills that challenge participants less in the assessment. 
These findings also correspond to actual participation in CS 
projects because participants less frequently engage with 
forming hypotheses or analyzing data (Phillips et al. 2019), 
be it for motivational or cognitive reasons. Even though the 
number of variables (i.e., item complexity) contributed to 
item difficulty, this effect’s direction cannot be determined. 
We further discuss this effect in the Limitations section.

Considering the text complexity and use of specialist 
terms in the SR assessment, we found that both item features 
affected item difficulty and reduced the research context’s 
effect on item difficulty. Although, in previous research, an 
explanatory modeling of the items in an SR assessment 
indicated that text complexity and specialist terms influence 
the item difficulty (e.g., Stiller et al. 2016; Krell, Khan, and van 
Driel 2021), the systematic development of SR assessments 
has not yet considered the language aspect (Krell 2018). Our 
findings indicate that text complexity and specialist terms 
impact the research context’s influence on item difficulty. 
Obviously, the cognitive processing of both the specialist 
terms and the research context relies on domain-specific 

knowledge (Le Hebel et al. 2017). We recommend that 
the language used in different research contexts should be 
accounted for in SR assessment because this reduces the 
research context’s effect on item difficulty.

LIMITATIONS

Despite the significant contribution of the item features 
examined in our study, another 61% of variance remained 
unexplored. Future research should explore further item 
features that rely on the cognitive processes of solving 
items that require SR. For example, in this study, we did 
not consider how pictorial representations influence the 
item difficulty in SR assessments. At least for students, 
pictures may reduce the difficulty of items as they reduce 
the cognitive effort required to construct a mental model 
of the problem (Lindner et al. 2018).

Furthermore, our sample is a convenience sample from 
two field seasons of a CS project, and we did not compile it 
based on theoretical considerations. The participants who 
were interested in the project were also quite well educated. 
Although this sample is comparable to other CS projects 
(e.g., Trumbull et al. 2000), some participants’ expert status 
might have led to the counterintuitive finding that items 
with two independent variables were less difficult. Highly 
skilled participants might perceive the variation of only one 
variable as easy and, therefore, be prompted to invest less 
thinking effort in the task. Further validation of the SRQ in 
more heterogeneous samples of CS participants should be 
put forward in further studies.

IMPLICATIONS
Our research provides practical implications for evaluating 
ILOs in CS (Jordan et al. 2012) as it shows how item 
features in questionnaires influence the item difficulty. We 
suggest that practitioners and researchers in CS account 
for the different SR skills and the number of variables when 
developing questionnaires to evaluate participants’ SR skills 
for the investigation of hypotheses. Regarding SR skills that 
have been less common in evaluations of CS projects, such 
as forming hypotheses (Stylinski et al. 2020), the blueprint 
might help to standardize assessment instruments in the 
different research contexts. We further suggest accounting 
for the research context in which SR skills have to be applied. 
The research context influences the item difficulty in our 
study—in addition to the deep-structure item features that 
directly relate to SR.

In our study, the explanatory modeling based on 
item features provided evidence for the validity of the 
assessment. Following our theoretical assumptions, our 
results indicate that the research context, the SR skills, 
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and the item complexity accounted for 34% (or 39% with 
the item surface features text difficulty and specialist 
terms added) of the item difficulty that individual citizens 
encountered while solving the assessment items on SR. The 
substantial amount of variance explained can be traced 
back to the systematic development of the SRQ in regard 
to item features. We suggest that practitioners use this 
blueprint when adapting the SRQ to the research context 
and participant sample of their CS project. 

Furthermore, the analysis of item features revealed that 
the item difficulty differs depending on the SR skills, the 
item complexity, and the research context in an assessment 
of SR. This confirms that the development of items and 
the interpretation of test scores in SR assessments should 
consider the particular item features. When comparing 
participants’ proficiency in SR across CS projects that assess 
different SR skills or SR in different disciplines, researchers 
should consider that the test items are not equally 
difficult. Similar to our overview of item features in this 
SR assessment on the investigation of hypotheses, future 
research should describe which science inquiry skills were 
tested in which contexts and using how many variables in 
the assessment. Given the number of research contexts and 
the different science inquiry skills addressed by CS projects, 
further research on the evaluation of SR in samples of citizen 
scientists should systematically explore item feature effects.
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