
Introduction
In recent years, citizen science has emerged as a way to 
collect data for scientific efforts (Follett and Strezov 2015) 
across disciplines as diverse as evolution (e.g., Evolution 
MegaLab; Worthington et al. 2012), astronomy (e.g., 
GalaxyZoo; Fortson et al. 2012), ornithology (e.g., eBird; 

Sullivan et al. 2014), plant phenology (e.g., Project BudBurst; 
Wolkovich and Cleland 2011), and water surveillance (e.g., 
Global Water Watch; Deutsch and Ruiz-Córdova 2015). In 
addition to the broad objective of providing data for scien-
tific research efforts, citizen science projects often include 
goals of environmental education, community engage-
ment, and citizen empowerment. A common denominator 
among citizen science projects, as opposed to traditional 
scientific monitoring, is the volunteer base committed to 
collecting data. Choosing citizen science over traditional 
monitoring may involve tradeoffs between lower costs of 
citizen science data collection and loss of data accuracy. 
Although the literature on citizen science data collection 
methods is rich (e.g., Hochachka et al. 2012), less is known 
about the reliability or accuracy of hydrologic citizen sci-
ence data and its application for policy makers. 

Shinbrot, XA, et al. 2020. Quiahua, the First Citizen Science Rainfall Monitoring Network in Mexico: 
Filling Critical Gaps in Rainfall Data for Evaluating a Payment for Hydrologic Services Program. 
Citizen Science: Theory and Practice, 5(1): 19, pp. 1–15. DOI: https://doi.org/10.5334/cstp.316

RESEARCH PAPER

Quiahua, the First Citizen Science Rainfall Monitoring 
Network in Mexico: Filling Critical Gaps in Rainfall 
Data for Evaluating a Payment for Hydrologic 
Services Program
Xoco A. Shinbrot*, Lyssette Muñoz-Villers†, Alex Mayer‡, Melissa López-Portillo†, Kelly 
Jones§, Sergio López-Ramírez‡, Carlos Alcocer-Lezama†, Miriam Ramos-Escobedo‖ and 
Robert Manson¶

Citizen science data can fundamentally advance the natural sciences, but concerns remain about its accu-
racy, reliability, and overall value. While some studies have evaluated accuracy of citizen science data, 
few have also assessed its potential contribution to conservation policy. This study focuses on rainfall 
data collection, with four goals: (1) to examine motivations of, and barriers for, volunteer participation in 
citizen science; (2) to evaluate accuracy of citizen science rainfall data in comparison to automatic rain 
gauge data; (3) to incorporate citizen science rainfall datasets into hydrological models; and (4) to apply 
the hydrologic model to gauge the contribution of citizen science data to the efficient design of payment 
for hydrological services (PHS) programs. Twelve citizen science volunteers were trained and collected 
rainfall data between June 2017 and February 2019 across two watersheds in Veracruz, Mexico. We found 
that these volunteers were highly motivated by conservation values and learning, while only a few volun-
teers faced barriers related to time availability for making daily measurements. The mean error in daily 
rainfall, computed by comparing the manual and automated gauge measurements, was less than 1 mm, or 
12% of the average daily rainfall. Approximately one-third (29%) and two-thirds (71%) of the errors were 
attributed to missing data and misread data, respectively. Spatial patterns of rainfall distribution across 
the watersheds were similar between citizen science and automatic gauge data, revealing a large fraction 
of rainfall in middle elevations. Furthermore, the results show that if PHS areas are determined using 
the existing national rainfall network alone, without citizen science data, critical areas that contribute 
to dry-season flows would be missed. To our knowledge, this is the first citizen science network for col-
lecting rainfall data in Mexico that has produced results that are relevant to conservation policy design.

Keywords: Citizen science; climate; watershed hydrology; payment for hydrologic services program; 
conservation policy

*	Cornell University, US
†	Universidad Nacional Autónoma de México, MX
‡	Michigan Technological University, US
§	Colorado State University, US
‖	Global Water Watch, MX
¶	Instituto de Ecología, A.C., MX
Corresponding author: Xoco A. Shinbrot (x.shinbrot@gmail.com)

https://doi.org/10.5334/cstp.316
mailto:x.shinbrot@gmail.com


Shinbrot et al: Quiahua, the First Citizen Science Rainfall Monitoring Network in MexicoArt. 19, page 2 of 15

Data collection by citizen scientists commonly involves 
the collection of periodic but infrequent snapshots of, 
for example, wildlife, vegetation, or soil (Roy et al. 2012; 
Vianna et al. 2014). However, these temporary observa-
tions are less useful in most hydrometeorological appli-
cations where continuous time series may be required to 
understand and solve a scientific or engineering problem 
(Gomani et al. 2010; Liu et al. 2008; Walker et al. 2016). 
To date, only a few published examples exist within the 
hydrology and water resources literature that describe 
continuous citizen science monitoring programs (Buyert 
et al. 2014; Conners et al. 2001; Deutsch et al. 2005; 
Gomani et al. 2010; Lowry et al. 2013; Walker et al. 2016). 
Such case studies demonstrate that continuous monitor-
ing programs can be successfully implemented for hydro-
logic data collection to study, for example, groundwater 
levels, stream heights, rainfall patterns, and other climatic 
data. 

Indeed, with proper protocols, training, and oversight, 
volunteers can collect data of similar quality to those 
collected by experts (Bonney et al. 2014; Cooper, Shirk, 
and Zuckerberg, 2014; Kosmala et al. 2016; Theobald et 
al. 2015). Several studies have also found that the experi-
mental design should be chosen to best match the poten-
tial uncertainty in the data collected by citizen scientists 
(Bonney et al. 2014; Hochachka et al. 2012; Kremen, 
Ullman, and Thorp 2011; Riesch and Potter 2014). Some 
researchers have attempted to correlate predictors of citi-
zen science data quality with factors such as participant 
experience and demographics (Crall et al. 2011; Danielsen 
et al. 2014), but the results have been inconsistent (Kelling 
et al. 2015; Kosmala et al. 2016). 

The continuous collection of accurate data is largely 
dependent on the commitment of motivated volunteers 
who contribute their unpaid time. Understanding volun-
teer motivations for and barriers to participation might 
be essential for improving program retention (Alender 
et al. 2016). In a systematic review of 888 citizen science 
articles, Follett and Strezov (2015) found only 3% of stud-
ies investigated volunteer motivations to participate. 
Increasingly, citizen science projects have examined the 
desire to contribute to science (Land-Zandstra et al. 2016; 
Raddick et al. 2013), to help the environment (Domroese 
and Johnson 2017; Hobbs and White 2012), to learn 
about the topic (Land-Zandstra et al. 2016), to spend time 
with others who share the same values (Rotman et al. 
2012), and to spend time in nature (Wright et al. 2015). 
However, the influence of any one of these motivations 
in the decision to volunteer for citizen science varies. For 
example, although some studies show that helping the 
environment is the germane factor in environmental vol-
unteer participation (Bruyere and Rappe 2007), others 
found it had no influence on the duration of volunteers’ 
involvement (Asah and Blahna 2012). Without appro-
priate designs accounting for such motivations citizen 
scientists are likely to drop out of projects/programs. 
Water-monitoring programs specifically have found it 
difficult to maintain group motivation; this leads to vol-
unteer fatigue and dropouts (Deutsch and Ruiz-Córdova 
2015). Such turnover is concerning for scientists who are 

often limited by funding and time to implement multiple 
rounds of training (West and Pateman 2016).

Finally, to the authors’ knowledge, no published stud-
ies have attempted to evaluate, quantitatively, the con-
tribution of citizen science data collection efforts to the 
scientific understanding of a hydrologic system and the 
translation of that understanding to watershed conserva-
tion policy. We explore the issue of participant motiva-
tions and data accuracy in Quiahua, one of the first citizen 
science rainfall monitoring projects in Mexico, carried out 
in two main catchments located in the upper Antigua river 
watershed in central Veracruz, Mexico. In the past few dec-
ades, this area has experienced substantial deforestation 
of tropical montane cloud forests (TMCF) (Muñoz‐Villers 
and López‐Blanco 2008). Low flows in rivers used for local 
urban water supplies in the 1990s prompted local inter-
est in how land-use change can impact hydrologic cycling, 
particularly streamflow, as well as the creation of payment 
for hydrological services (PHS) programs (Nava-López et 
al. 2018). 

Mexico’s national PHS program has been managed by 
the National Forest Commission (CONAFOR in Spanish) 
in the study area since 2003. The stated purpose of the 
national PHS program is to support the provision of hydro-
logic services while promoting poverty alleviation by pay-
ing rural landowners to conserve forests within priority 
watersheds (McAfee and Shapiro 2010). The national PHS 
program has been gradually replaced by matching funds 
from programs managed by local water operators, which 
now provide more than 50% of the funding for program 
operations (Nava-López et al. 2018). Although CONAFOR 
publishes a detailed explanation of the methodology 
used to select eligible zones in target watersheds that 
can receive payments, no guidance is provided to prior-
itize where the payments should be targeted within these 
zones. Targeting criteria are typically assigned by local 
PHS program operators using a mix of spatially explicit 
biophysical and socio-economic data, such as a combina-
tion of deforestation risk and degree of socioeconomic 
marginalization (Mokondoko et al. 2018; Von Thaden 
et al. 2019). According to interviews with local program 
operators, they do not consider spatially explicit hydro-
logical information, such as locations where the greatest 
amount of groundwater recharge occurs, in their target-
ing methodologies. Extensive hydrologic data collection is 
typically too expensive to maintain by local PHS program 
managers.  

While efforts have been made to quantify the hydrologi-
cal impacts associated with forest conversion in headwater 
catchments (García Coll et al. 2008; López‐Ramírez et al. 
2020; Muñoz-Villers and McDonnell 2013; Muñoz-Villers 
et al. 2015) a complete understanding of the local hydrol-
ogy, the impacts the conversion of tropical montane cloud 
forests to pasture and crop lands has on hydrology, and 
the potential success of PHS programs, has been limited 
by the paucity of data, especially rainfall data. We recruited 
citizen science volunteers to measure daily rainfall using 
manual gauges over a 20-month period, with four goals: 
(1) to examine motivations and barriers of volunteers 
to participate in the rainfall monitoring program; (2) to 
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evaluate data accuracy of citizen science rainfall data in 
comparison with automatic rain gauge data; (3) to incor-
porate citizen science rainfall datasets into hydrological 
models; and (4) to apply the hydrologic models to assess 
the efficiency of local PHS programs and thereby demon-
strate the potential utility of citizen science data to inform 
PHS program design. 

Methods
Study area
This research was conducted in the Pixquiac and the 
Gavilanes catchments in the upper Antigua river water-
shed in central Veracruz, Mexico. The drainages of the 
Pixquiac (~100 km2; 1,024–3,759 meters above sea level 
[m.a.s.l.]) and the Gavilanes (~41 km2; 1,090–2,960 m.a.s.l.) 
rivers are located on the eastern (windward) slopes of the 
Sierra Madre Oriental mountain range (19°28’, –97°01’; 
Figure 1). These two adjacent catchments are important 
water supplies for the city of Xalapa (providing 38% of 
the water supply for 500,000 inhabitants) and Coatepec 
(providing 90% of the water supply for 92,000 inhabit-
ants). Dominant land covers in the catchments consist of 
forests (76%), pasture and agricultural lands (22%), and 
urban areas (2%) (Von Thaden et al. 2019). The forests 
are primarily composed of TMCF (>50%), followed by 
mixed temperate forest (~25%) (ESA 2015). The climate 
is temperate humid with abundant summer rains (García 
1988). About 80% of the annual rainfall falls as convective 
storms during the wet season (May–October), followed 
by a prolonged dry season (November–April). Maximum 

groundwater recharge and runoff also occurs during the 
wet season (Muñoz-Villers and McDonnell 2013). 

The local climate varies markedly with elevation. Data 
from climate stations in or near the catchments indicate 
that mean annual rainfall ranges from 1,120 mm to 3,185 
mm to 855 mm as elevation increases from 1,200 m.a.s.l. 
to 2,100 m.a.s.l. to 3,000 m.a.s.l., respectively. Mean daily 
temperatures (5°C to 19°C) and mean annual evapo-
transpiration (855–1,215 mm, estimated as reference 
evapotranspiration) also vary considerably with elevation 
(Holwerda et al. 2013; Muñoz-Villers et al. 2012). Although 
these spatial trends in climate have been recognized at 
the regional scale, climatic data in the two catchments is 
sparse, which has limited the characterization of critical 
hydrologic processes controlling runoff. As a result, the 
impacts of land use on hydrologic cycling and the effec-
tiveness of conservation programs focusing on the link-
ages between forest conservation and hydrologic services 
are poorly understood.  

The Pixquiac and Gavilanes catchments meet several 
of the enrollment criteria for Mexico’s national PHS pro-
gram, including the presence of priority ecosystems, prox-
imity to downstream cities, and water scarcity issues, as 
well as active local PHS programs operating in the region. 
Figure 1 shows the areas receiving payments from PHS 
programs in the study area between 2003 and 2014, cov-
ering 26% of both catchments. Climatic data is especially 
limited in the mid-range elevation portions of these catch-
ments, i.e., 1800–2500 m.a.s.l., which, if regional spatial 
trends were to hold true, is where most of the rainfall 

Figure 1: (a) Study area location in central Mexico and (b) locations of existing national rainfall gauges and new gauges 
associated with this project. Also shown are locations of areas receiving payment for hydrologic services (PHS) (blue) 
and cities (green) that depend on water supplies from the catchments.
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occurs. The goal of the Quiahua network was to concen-
trate collection of rainfall measurements at mid-range ele-
vations (1,500–2,500 m.a.s.l.) across our study catchments 
and thus to contribute the information toward efficient 
targeting of PHS payments.

Data collection
Recruiting and training volunteers
The local PHS programs are managed by the Fideicomiso 
Coatepecano para la Conservación del Bosque y el Agua 
(FIDECOAGUA) in the Gavilanes watershed and supported 
by the Senderos y Encuentros para un Desarrollo Autónomo 
Sustentable (SENDAS) in the Pixquiac watershed (Nava-
López et al. 2018). We worked with these organizations as 
well as with the largest water monitoring and citizen sci-
ence organization in the country, Global Water Watch-Mex-
ico (GWW-Mexico). Established in 2008 in Veracruz state, 
GWW-Mexico has trained more than 750 citizen scientists 
to date in 12 Mexican states in both stream water quality 
and discharge methods (Florez-Diaz et al. 2013).

Recruitment occurred between September and 
November 2016. Two training workshops were held in 
March 2017—one in the Pixquiac in the town of Rancho 
Viejo with ten volunteers and one in the Gavilanes catch-
ment in the city of Coatepec with five volunteers. The 
workshops were conducted by GWW-Mexico, SENDAS, 
and hydrologists from Universidad Nacional Autónoma 
de Mexico and Michigan Technological University. The 
workshop began with a discussion of the general goals of 
the rainfall monitoring program and the roles of the rain-
fall volunteers. Participants were trained to measure daily 
rainfall from manual gauges and report the corresponding 
data on forms developed for the project. The training fol-
lowed the Community Collaborative Rain, Hail and Snow 
Network (CoCoRaHS) training protocol, which has been 
used for training thousands of daily rainfall observers in 
the US, including instruction in the Spanish language in 
Puerto Rico. For identification and engagement purposes, 
the word quiahua, meaning lluvia (rainfall) in the indig-
enous Aztec náhuatl language, was proposed in the work-
shops as the name of the network. From these workshops, 
we recruited 16 volunteers to participate in the rainfall 
monitoring training.

Quiahua rainfall monitoring network
A total of 12 out of the 16 volunteers trained in the work-
shops participated in the Quiahua network throughout the 
entire study period. Six participants monitored a site indi-
vidually, and three sites were each monitored by two vol-
unteers, for a total of nine locations. Volunteers measured 
rainfall within their home watersheds. Rainfall was meas-
ured once per day, and volunteers were advised to take rain-
fall measurements in the early morning, between 6 a.m. 
and 10 a.m. local time. Program technicians visited volun-
teers one to two weeks after the workshops to install the 
equipment on volunteers’ properties and to answer general 
questions regarding data collection. In each location, volun-
teers measured rainfall with a 250-mm manual rain gauge 
with 0.2 mm increments (WeatherYourWay/CoCoRaHS, 
https://weatheryourway.com/), and a RG3 automatic tip-

ping bucket rain gauge (Onset, EUA; resolution of 0.2 mm) 
was installed nearby. Rainfall monitoring points covered 
an altitude range between 1,309 and 2,581 m.a.s.l., cor-
responding mostly to mid-range elevations in the water-
sheds. For this study, we collected daily rainfall data from 
June 2017 to February 2019, including two complete dry 
seasons (November 2017–April 2018; November 2019–
February 2019) and one complete wet season (May-October 
2018). The nine sites were visited monthly by a field tech-
nician to collect the data forms and to download the data 
from paired automatic rain gauges. Daily rainfall informa-
tion from volunteers was entered manually in Excel spread-
sheets. Data from the automatic gauges was checked for 
errors using quality assurance protocols similar to those 
outlined in Goodrich et al. (2008). 

For comparison, we used the automatic gauges 
as a benchmark to validate volunteers’ rainfall data. 
Differences between daily rainfall for the automatic and 
manual gauges were divided into errors for the days when 
a reading was not taken (“missing data error” = manual 
gauge – automatic gauge; note that manual gauge = 0 for 
all of these days) and errors for the days when a reading 
was taken (“misread data error” = manual gauge – auto-
matic gauge). We used this data to evaluate data accuracy 
of citizen science rainfall data in comparison to automatic 
rain gauge data.

Survey data collection and analysis
We surveyed the 12 volunteers who continued to partici-
pate in rainfall monitoring throughout the study period 
prior to the workshop, two weeks after the workshop, and 
six months after the workshop to understand motivations 
and barriers to participate and any changes over time in 
these variables. The surveys were self-administered in 
Spanish (Supplemental File 1). In the pre-survey, we col-
lected information about (1) demographics—specifically, 
sex, age, number of family members, number of children, 
years in the community, education level, and income; (2) a 
17-item scale of motivations derived from (Ryan, Kaplan, 
and Grese 2001), particularly (a) sense of responsibility to 
care for nature, (b) motivations to learn, (c) motivations 
to be a part of something, (d) social motivations, and (e) 
motivation to escape daily routines and spend time in 
nature. Demographic factors were recorded using fill-in-
the-blank questions, except income, which was measured 
with a multiple-choice question with income ranges. 
Motivations were measured using a five-point Likert scale 
of totally disagree, disagree, neutral, agree, or totally 
agree. Each Likert scale construct—responsibility, learn-
ing, desire to be part of something, and escape—had a 
minimum of three related questions to ensure reliability, 
validity, and generalizability (Carifio and Perla 2007; Vaske 
2008). The two post-surveys collected information on the 
17-item scale of motivations, and the final survey included 
an open-ended question about motivations and barriers 
to participate. The average time to conduct the surveys 
was 20 minutes. The survey protocol, including sampling 
methods, survey instrument, and written informed con-
sent procedure, was approved by administrative review of 
the IRB at Colorado State University (#264-17-H). Survey 

https://weatheryourway.com/


Shinbrot et al: Quiahua, the First Citizen Science Rainfall Monitoring Network in Mexico Art. 19, page 5 of 15

participants also provided their written informed consent 
to participate in this study. 

We used descriptive statistics to understand demograph-
ics of volunteer citizen scientists. For motivational factors, 
we conducted an exploratory factor analysis with non-
orthogonal rotation (Sarabia et al. 1993). To determine 
the reliability and consistency of statements, we evaluated 
Cronbach’s alpha for each factor, where all but one was 
above 0.8. While values of 0.6 or 0.7 are acceptable (van 
Griethuijsen et al. 2015), Cronbach’s alpha of 0.8 or higher 
is preferred (Cortina 1993). A recombination of factors led 
to new typologies of motivations, including community 
(“You like to meet new people” and “You are interested 
in being part of a well-organized team”), public service 
(“You are interested in improving public knowledge about 
water” and “You like to spend time with people who have 
similar interests as you”), and conservation motivations, 
which included motivations to be part of something and 
to escape. To understand whether motivations to partici-
pate change over time, we conducted a repeated meas-
ured analysis of variance (ANOVA) before the workshop, 
two weeks after, and six months after, followed by a post 
hoc Tukey-Kramer test on the studentized range distribu-
tion for unequal sample sizes (Abdi and Williams 2010).

Answers to the open-ended question on most impor-
tant motivations and barriers to participate in citizen 
science were transcribed. Two bilingual researchers used 
an iterative process of content and thematic analysis, for 
intercoder reliability, following a six-step process: gaining 
familiarity with the data, coding, searching for themes, 
reviewing themes, defining and naming themes, and writ-
ing up the results (Saldaña, 2015). The resulting codes 
were then entered into the qualitative software NVivo 12 
Pro for analysis of the text.

Modeling watershed hydrologic services
The point-based daily rainfall data summed to 5,083 
observations over 621 days and was interpolated over the 
study area with ArcGIS to map dry season (November–
April), wet season (May–October), and annual precipita-
tion. Three different datasets of rainfall information were 
compared: (1) the national climate stations alone, (2) the 
citizen scientist volunteer data plus the national cli-
mate stations, and (3) the automatic gauge data plus the 
national climate stations. Thiessen polygons were used to 
create the rainfall distribution maps for the national cli-
mate stations alone, since this procedure is appropriate 
for cases where only a few observation points are availa-
ble. The inverse-distance-weighted technique was used to 
generate the precipitation maps for the rainfall monitor-
ing data plus the national climate stations as well as the 
automatic gauge data plus the national climate stations.

A hydrologic model, the Soil Water Assessment Tool 
(SWAT) (Watson and Philip 1985), was parameterized for 
the study area and calibrated against available stream-
flow data (López-Ramirez et al. 2020). SWAT is a semi-
distributed rainfall-runoff model that has been used to 
simulate watersheds in tropical montane regions similar 
to our study area (Arnold et al. 2012; Kim et al. 2017; 
López-Ramírez et al. 2020; Plesca et al. 2012; Schmaltz 

and Fohrer 2009). Soil-type and hydrophysical proper-
ties maps (Strauch et al. 2017), land-use/land-cover maps 
(INEGI, 2013a), watershed boundaries, and digital eleva-
tion models (CONANP et al. 2015) were obtained from 
government sources and used as input to the SWAT model 
with the ArcSWAT tool (INEGI, 2013b). Calibration was 
based on minimizing the difference between simulated 
and observed daily stream flows at the two watershed out-
lets, as is typical of hydrologic modeling efforts (Arnold 
and Allen 1999; Gupta, Sorooshian, and Yapo, 1999; 
Winchell et al. 2013). SWAT streamflow output includes 
spatial distributions of surface runoff and baseflow contri-
butions. In this case, the spatial distributions of baseflow 
contributions were used to indicate spatial locations of 
hydrologic significance, since baseflow is the critical ele-
ment for maintaining streamflow during the dry season 
and buffering against droughts. We used the annual aver-
age baseflow contributed over the simulation period as a 
simple metric representing baseflow magnitude. 

Results
Volunteer motivations and barriers
We had a 100% response rate prior to the workshop and 
two weeks after the workshop, and 75% (n = 9) six months 
after the workshop. Volunteers were in their late thirties 
(mean 39.2 ± 17.8 yrs), had lived most of their lives in their 
community (21.7 yrs), were highly educated (67% [n = 8] 
had completed more than high school education), and 
58.3% (n = 7) reported earning above-average incomes 
(>8,170 pesos/month) (Table 1). Volunteers were equally 
split between men and women who had an average of 
3.83 family members, with few having children less than 
12 years old (Table 1).  

The factor analysis with non-orthogonal rotations listed 
in Table 2 shows motive-related questions on responsibil-
ity (4), on learning (4), on being part of something (3), on 
socializing (2) and on escape (3) were loaded onto five fac-
tors. Factor 1, conservation values, is a recombination of 
motivation themes that explains 4.4% of the variance, and 
results from the recombination of motivations to be part 
of a conservation team and to be in nature (Ryan, Kaplan, 
and Grese 2001). Factor 2, motivations for learning, 
reflects the same interests in learning new things as con-
ceptualized in (Ryan, Kaplan, and Grese 2001) and explains 

Table 1: Demographic variables of citizen scientists 
(number of observations = 12).

Variables Mean (SD)

Age in years 39.25 (17.79)

Fraction (%) with more than high school 
education

66.67 (NA)

Fraction (%) women 50.00 (0.54)

Number of family members 3.83 (3.98)

Number of children less than 12 years old 0.50 (0.54)

Years in the community 21.66 (22.72)

Fraction (%) high income  
(>8,170 pesos/month)

58.33 (NA)
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4.2% of the variation. Factor 3, feelings of responsibility 
for taking care of nature, explains 3.6% of the variation 
and largely reflects the same themes described in (Ryan, 
Kaplan, and Grese 2001) while integrating one escape fac-
tor in the form of, “you like to explore the environment.” 
Factor 4, public service, is a theme that reflects a recom-
bination of social and learning motivations, explaining 
2.6% of the variation. Finally, Factor 5, community, is also 
a theme that reflects a recombination of social motiva-
tions and motivations to be part of something, explaining 
2.1% of the variation. 

Before the training, volunteer citizen scientists were 
highly motivated by learning (4.81; mean value) and 
conservation values (4.65; mean value). Motivations of 
responsibility for the environment, public service, and 
community were also high (Table 3).  After two weeks, the 
highest motivations continued to be learning (4.81; mean 
value), while public service became more important (4.63; 

mean value). Six months after training, the highest stated 
motivations for those that responded were still conserva-
tion values (4.60; mean value) and learning (4.50; mean 
value), although they were lower than originally stated 
before the training. 

A repeated measures ANOVA for the five factors yielded 
no significant variation for Factor 1 (p-value = 0.61), Factor 
3 (0.459), or Factor 4 (p-value = 0.807) (Supplemental 
File 2). However, the repeated measures ANOVA demon-
strated significant changes over time for Factor 5 (0.026) 
and Factor 2 (p-value = 0.049), where a post hoc Tukey-
Kramer test for Factor 5 showed significant differences 
before and two-weeks after training (p = 0.031), but not 
before and six months after training (p = 0.937). The post 
hoc Tukey-Kramer test failed to show significant differ-
ences at p < 0.05 between any time points for Factor 2.

Qualitative data from the open-ended survey question 
on the greatest motivation for participation in rainfall 

Table 2: Principal component analysis of motivational factors for participation in citizen science.

Motivation Code Factors

Survey question F1 F2 F3 F4 F5

Conservation values

You would like to work with an effective leader in 
conservation.

Organization_2 0.87

You like to be in a natural environment. Escape_1 0.86

You have a desire to be part of an organization that 
values your work.  

Organization_3 0.84

You like to have time for quiet reflection. Escape_2 0.76

Learning

It’s important to you to learn more about nature Learning_4 0.94

You are interested in learning about water Learning_2 0.91

You are interested in learning new things generally. Learning_3 0.75

Responsibility

You like to explore the environment. Escape_3 0.88

You are worried about the impact of humans on water Responsibility_2 0.84

You feel obligated to conserve the environment. Responsibility_1 0.78

In your opinion, it’s a public responsibility to consider 
how your actions affect the environment.

Responsibility_3 0.66

You would like to help others in the community. Responsibility_4 0.55

Public service

You are interested in improving public knowledge 
about water. 

Learning_1 0.92

You like to spend time with people who have similar 
interests as you. 

Social_1 0.61

Community

You like to meet new people. Social_2 0.96

You are interested in being part of a well-organized 
team.

Organization_1 0.82

Cronbach’s alpha 0.87 0.88 0.84 0.61 0.82

Variance explained (%) 4.4 4.2 3.6 2.6 2.1
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monitoring were consistent with survey data, showing 
that volunteers were overwhelmingly interested in learn-
ing more generally, and learning about water specifically. 
Of the nine who responded six months after the survey, 
six responded on their motivation to learn, for example, 
“I’d like to know more.” Another important theme men-
tioned by four volunteers was their interest in helping 
research, for example, “I’d like to help research on precipi-
tation.” Also mentioned by two people was their interest 
in contributing to the community, and one person men-
tioned their interest in learning about the region they live 
in, which we coded as “sense of place.”

Data from the open-ended question on the greatest 
barriers to participation in rainfall monitoring show that 
the frequently cited barriers for volunteers were insuffi-
cient time (n = 4), difficulty organizing others to collect 
rainfall data (n = 3), or traveling to the site (n = 2), after 
six months, where two people mentioned more than one 
barrier. However, the majority (n = 5) indicated that there 
were no barriers to participation.

Evaluating accuracy of manual versus automatic 
rainfall gauges 
On average, volunteers measured precipitation 565 times 
(91% of days) between June 2017 and February 2019 (621 
days), for a total of 5,083 observations. Table 4 shows the 
results of the comparison between the automatic gauges 
and the volunteer rainfall data annually and for wet and 
dry seasons. The results indicated that, overall, data col-
lected by volunteers underestimated daily rainfall by 
almost 1 mm (12% error), and t-tests indicated significant 
differences between the automatic gauge and volunteer’s 
rainfall data (p < 0.0001). Most of the underestimation 
occurred during the wet season, where volunteer data 
underestimated the rainfall by 16%, and the t-test results 

indicated a high probability that the means were different 
(p < 0.0001).  

The mean missing data error and misread data error 
were –4.5 mm/day (506 missing observations) and –1.0 
mm/day, respectively. The missing data and misread 
errors were responsible for 29% and 71% of the mean 
error of –0.86 mm/day, respectively. The highest fraction 
of missing days for a volunteer was 29%; with this particu-
lar volunteer removed, the mean fraction of missing days 
was less than 7%. Of the days when readings were taken 
by volunteers, approximately one-third (32%) occurred 
on dry days and where both the automatic and manual 
gauges registered zero rainfall and a misread error of zero. 
Figure 2 shows the cumulative frequency of the misread 
errors without the days both the automatic and manual 
gauges registered zero rainfall, showing that the distribu-
tion of errors is roughly symmetric around zero, with a 
slight bias toward negative numbers. One-third (33%) and 
more than three-quarters (82%) of misread errors in daily 
rainfall fall between –1 mm and +1 mm and –10 and +10 
mm, respectively. 

Although volunteers’ measurements tended to underesti-
mate total rainfall, the errors did not translate to substantial 
differences in spatial patterns when compared with pat-
terns obtained from the automatic gauges alone, as shown 
in Figure 3. The results in Figure 3 show dramatic differ-
ences between the rainfall distributions using the national 
climate stations alone and distributions using volunteer 
rainfall data and automatic gauge data together with the 
national gauge data. Especially important is that the annual 
and wet-season rainfall in the central portions of the study 
area were substantially higher (more than 300 mm and 
400 mm for the wet season and annual rainfall) when look-
ing at volunteer or automatic gauge data combined with 
the national gauge data, versus with the national gauge 

Table 3: Volunteer motivations to participate in rainfall monitoring before, two weeks after, and six months after 
training by factor (5-point Likert Scale).

Motivational factors Before
mean (SD)

2 weeks
mean (SD)

6 months 
mean (SD)

F1. Conservation values 4.65 (0.44) 4.43 (0.85) 4.60 (0.39)

F2. Learning 4.81 (0.33) 4.81 (0.38) 4.50 (0.47)

F3. Responsibility 4.55 (0.50) 4.42 (0.70) 4.30 (0.95)

F4. Public service 4.50 (0.67) 4.63 (0.56) 4.55 (0.49) 

F5. Community 4.46 (0.58) 3.64 (0.98) 4.35 (0.52)

Observations 12 12 9

Table 4: Comparison of automatic gauge and volunteer data by season, with p-values from results of paired t-tests.

Season Mean daily rainfall (mm) p-value for 
Difference 

between means
Automatic gauge 

data (n)
Volunteer data 

(n)
Difference (%)

Annual 7.05 (5520) 6.19 (5083) –0.86 (–12%) <0.0001

Wet season 11.73 (2682) 9.85 (2499) –1.88 (–16%) <0.0001

Dry season 2.63 (2838) 2.58 (2584) –0.05 (–2%) <0.001
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data alone.  Volunteer rainfall data and national gauge 
data underestimate annual and wet-season rainfall by 100 
mm to 200 mm in the central portion of the watershed, 
in agreement with the results in Table 4. In particular, the 
gauge located in the center of the watersheds (ZAP_P2) was 
responsible for much of the underestimation by volunteers 
at that location in the central part of the watershed. 

Incorporating rainfall datasets into hydrologic models 
The three sets of rainfall data were used to generate 
annual baseflow contribution maps with the SWAT model 
in Figure 4. As expected, since the rainfall in the central-
to-lower portion of the Pixquiac and lower portion of the 
Gavilanes watersheds was higher when volunteer rainfall 
data or automatic gauge data were combined with the 
national gauge data, the baseflow contribution rates were 
substantially higher in these maps (Figure 4b and 4c) than 
for baseflow contribution rates simulated with the national 
gauge data alone (Figure 4a). The increase in simulated 
baseflow contribution rates in the middle portion of the 
study area for volunteer rainfall and automatic gauge data 
(Figure 4b), and with the national gauge data, was not 
as large as one might expect, given the large differences 
in rainfall with the national gauges alone (Figure 3). This 
result could be explained by the relatively steep slopes in 
most of the middle portion of the study area (see Figure 1), 
which tend to increase runoff and reduce soil infiltration, 
ultimately decreasing the water available for baseflow. Simi-
lar to rainfall distributions, the simulated baseflow contri-
bution was substantially lower when using combined volun-
teer rainfall data with the national gauge data as compared 
with combined automatic gauge and national gauge data.

The average baseflow contributions for the entire study 
area and for the areas receiving PHS payments alone are 
shown in Figure 5. The results in Figure 5 (white and gray 
bars) indicate that the average baseflow contributions 
predicted by the SWAT model increase substantially when 

Figure 3: Annual, wet-season (November 2017–May 2018), and dry-season (June–October 2017) rainfall distributions 
(in millimeters) from the national climate stations alone, from volunteer rainfall data plus the national climate sta-
tions, and from the automatic gauge data plus the national climate stations. Squares and triangles indicate the loca-
tion of the national and monitor-automatic gauges, respectively.

Figure 2: Cumulative distribution of daily misread errors 
(n = 3,440).  Dry days on which both the automatic and 
manual gauges registered zero rainfall (n = 1,592) have 
been removed.
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comparing the national gauges alone with volunteer rain-
fall data plus the national gauges, and with the automatic 
plus the national gauges, matching the spatially distrib-
uted results in Figure 4. The results in Figure 5 also 
indicate that the current targeting results in 13%–18% 
greater contributions to baseflow in the areas receiving 
payments, compared with the mean baseflow contribu-
tions across the watershed.

To further assess the efficiency of the payments with 
respect to capturing baseflow, the areas with the highest 
baseflow contributions corresponding to the same total 

area (3,990 ha) currently receiving payments were identi-
fied. These results (black bars in Figure 5) indicate that, as 
expected, baseflow capture increases when the PHS pay-
ments target areas that maximize baseflow contribution, 
compared with the mean baseflow contribution across 
the watershed. The value of volunteer rainfall data toward 
increasing targeting efficiency is demonstrated by look-
ing at the improvement in baseflow contributions for the 
national gauges alone (30%) versus the national gauges 
with volunteer rainfall data (54%) when maximizing base-
flow contributions. 

Figure 4: Annual average baseflow contribution distributions (in mm) obtained from the Soil Water Assessment Tool 
(SWAT) simulations with (a) the national climate stations alone, (b) volunteer rainfall data plus the national climate 
stations, and (c) the automatic gauge data plus the national climate stations. Gray overlay indicates the areas receiv-
ing payment for hydrologic services (PHS) program payments.
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Discussion
Designing citizen science to fulfill motivations and 
reduce missing and misread data
Understanding who signs up to participate in citizen 
science, why they stay, and what barriers they face are 
essential questions to address when engaging volunteers 
in citizen science projects. This study supports previous 
research that shows that citizen science typically attracts 
educated, financially stable individuals who are motivated 
by learning about the projects’ topics (Deutsch et al. 2009; 
Deutsch and Ruiz-Córdova 2015; Moriasi et al. 2015) and 
are interested in learning generally (Land-Zandstra et al. 
2016; Newman et al. 2012; Brossard et al. 2005). In this 
study, we found that citizen scientists were also moti-
vated by their conservation values. However, motivations 
did not change significantly over time; rainfall volunteers 
remained engaged, motivated by learning and conser-
vation values, and very few listed barriers to volunteer-
ing beyond constraints to time. The results suggest that 
recruitment should target individuals who are interested 
in engaging intellectually with the topic, and provide sup-
port for ongoing learning opportunities.

Like many citizen science projects, understanding how 
to maintain a consistent volunteer effort in data collec-
tion is only part of the puzzle. Ensuring that the data 
itself is accurate is another critical issue. Our results show 
that volunteers consistently underestimated rainfall com-
pared with automatic tipping bucket data, particularly in 
the wet season. There is a possibility that the automatic 
gauges were biased; however, most authors have noted 

that automated tipping bucket gauges are subject to 
underestimation, especially during high-intensity rain-
fall events (Crall et al. 2013; Molini, Lanza, and Barbera 
2005; Upton and Rahimi 2003; Lanza and Vuerich 2009), 
rather than overestimation. In contrast to our findings, 
Reges et al. (2016) reported that manual gauge measure-
ments by CoCoRaHS volunteers tended to be higher than 
automated, tipping bucket gauges. Parsing the time series 
error revealed that missing data and misread errors con-
tributed to roughly one-third (29%) and two-thirds (71%) 
of the mean error of –0.86 mm/day, respectively. While 
strategies such as collecting data forms from volunteers 
or providing other opportunities for interactions more 
frequently may decrease the incidence of missing data, 
reducing the misread error may be difficult. However, 
analysis of the distribution of misread errors, illustrated in 
Figure 2, indicates that eliminating larger misread errors 
in daily rainfall, using < –10 mm and > +10 mm as thresh-
olds, would decrease the misread error from –1.0 mm/
day to –0.2 mm/day overall. Thus, applying quality con-
trol protocols (similar to those used to analyze automated 
gauge data) to eliminate outlier errors in volunteer data 
could improve volunteer estimates substantially.

Incorporating citizen science into hydrological models 
to better inform payment for hydrologic services 
programs
Evaluations of PHS effectiveness typically use changes in 
forest cover as a surrogate to measure ecosystem service 
provision (Shedekar et al. 2016). In Mexico, CONAFOR 

Figure 5: Average baseflow contributions for the whole watershed area, for the areas receiving payments, and for the 
total payment area applied to the maximum baseflow areas for the Soil Water Assessment Tool (SWAT) simulations 
as measured by national climate stations alone, the volunteer rainfall data plus the national climate stations, and the 
automatic gauge data plus the national climate stations.
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targets payments to areas of high deforestation risk, with 
primary forest cover receiving priority, particularly cloud 
forests, and where policy makers assume that greater for-
est cover increases hydrological services (Wunder 2007). 
However, other metrics of success for PHS programs 
include additionality, which measures program-caused 
forest conservation. (Muñoz-Piña et al. 2008). Recent 
studies have shown that the majority of payments in Mex-
ico (61%) go to areas with low to medium deforestation 
risk (Von Thaden et al. 2019). bringing into question the 
additionality of such programs. Adding to efficacy con-
cerns, studies have shown that PHS programs are often 
lacking in areas identified as priority areas for hydrologi-
cal service provisioning (Mokondoko et al. 2018). Recent 
work (Costedoat et al. 2015; Berry et al. In review) suggests 
that hydrologic metrics, such as measures of dry-season 
streamflows, can be valuable indicators of ecosystems 
services provided by forests and converted land uses. The 
results in Figure 5 show that including a baseflow metric 
for prioritizing PHS can substantially increase baseflow in 
the study area. The reliability of these hydrologic metrics 
depends on the availability of accurate, frequently col-
lected hydroclimatic data, such as the data collected in 
the Quiahua citizen science rainfall effort. The results in 
Figure 5 also show that, despite the fact that the citizen 
scientists consistently underestimated rainfall, particu-
larly during the wet season, data contributed by the citi-
zen scientists could lead to substantially greater  targeting 
of baseflow contributions from the PHS policy design at a 
much lower cost than automated tipping bucket gauges.

Conclusions
To our knowledge, the Quiahua citizen science rainfall 
project is the first citizen science network for collecting 
information in Mexico that has produced results that are 
relevant to conservation policy design. Surveys revealed 
that volunteers participated in the network because they 
were highly motivated to be in nature, as well as to learn 
about watershed hydrology, and that these motivations did 
not change six months after the training. The most impor-
tant challenges for volunteer citizen scientists were insuf-
ficient time to make the rainfall measurements at the same 
time each day, and organizing among partner volunteers 
to determine who had the responsibility for making meas-
urements on a given day. While volunteer-collected data 
tended to be lower than data from the automatic gauges, 
on average, a substantial fraction of the underestimation 
(29%) resulted from missing observations. The spatial pat-
terns of rainfall distribution across the watershed were 
similar between the citizen science and automatic gauge 
data. These patterns reveal a large fraction of the rainfall 
in the middle elevations of the watersheds that was not 
apparent from the existing rainfall station network. Use of 
the data from paired citizen science automatic gauge sta-
tions as inputs to a calibrated hydrologic model revealed 
that there are areas of the watershed that should be con-
served because they contribute substantially to dry-season 
flows. The importance of these areas would not have been 
recognized with the existing, sparse rainfall measurement 
network. We encourage the use of citizen science programs 

to supplement government-run monitoring networks 
because they can result in the advancement of understand-
ing of hydrologic systems and can correspondingly improve 
the effectiveness of forest conservation programs. 
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