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ABSTRACT
Science literacy, including intrinsic motivation to participate in science outside of STEM 
careers, is an important goal of introductory biology courses aimed at non-majors. Citizen 
science may be able to support science literacy and science participation goals in such 
classes by providing authentic research opportunities matched to course content such 
as ecology or molecular biology. As yet, it is not known whether using citizen science of 
different biological disciplines in introductory biology courses for non-majors effectively 
increases undergraduates’ motivation to participate in future citizen science. To 
investigate how the content focus of citizen science projects impacts students’ attitudes 
toward future citizen science participation, we conducted a multilevel cross-classified 
analysis (mixed linear model) on four years of non-major biology students’ student survey 
data (n = 2,962) responding to ecological versus molecular biology citizen science project 
assignments using self-determination theory (SDT) as a backbone. Results suggest that 
general content categories of citizen science projects seem to be less influential on student 
attitudes toward future citizen science participation than are student-level characteristics 
and features of individual projects that promote competence and relatedness. Course 
instructors should be aware that adding citizen science projects simply for course content 
alignment is insufficient for promoting students’ intrinsic motivation. Instead, time needs 
to be allotted for making deeper connections between the students and the projects.  
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INTRODUCTION

As the COVID-19 pandemic has shown, supporting a 
scientifically literate populace is essential (e.g., Bridgman 
et al. 2020), yet research suggests that non-STEM majors 
are more likely to hold misconceptions about science 
content, to feel trepidation about their ability to carry out 
scientific processes, to devalue the impact of science on 
their everyday lives, and to ascribe to a non-science identity 
than do STEM majors (Cotner, Thompson, and Wright 
2017). Thus, developing science literacy, which is broadly 
defined as the science content knowledge, process skills, 
practices, and dispositions that researchers and policy 
makers consider necessary for life in modern society, is a 
central goal of biology courses aimed at non-STEM majors 
(Adams, 1990; Krajewski and Schwartz 2014; Aikens 2020; 
Vandegrift et al. 2020).

This raises questions of how to do so, particularly when 
science literacy is not well defined (Roberts, 2007, 2011; 
Vandegrift et al. 2020) and the literature encompasses a 
wide range of outcomes (e.g., Aristeidou and Herodotou 
2020), including participation in scientific activities (e.g., 
Toomey and Domroese 2013), knowledge changes (e.g., 
Crall et al. 2012), epistemic commitments (e.g., Price 
and Lee 2013), pro-science attitudes (e.g., Queiruga-Dios 
et al. 2020), and even policy advocacy (e.g., Cronin and 
Messemer 2013). Over the past twenty years, introductory 
biology courses seeking to address these questions have 
shifted away from traditional lecture formats and toward 
providing undergraduates with authentic, relevant research 
opportunities that engage non-STEM majors in epistemic 
activities and practices involving data analysis, model 
building, explanation, revision, and communication (Aikens 
2020) with the belief that such tasks will better prepare 
students to understand and evaluate relationships among 
science, society, and themselves. 

Citizen science (CS) has been heralded as a means to 
promote a research-oriented approach for learning in higher 
education science classrooms (e.g., Dunn et al. 2016; Shah 
and Martinez 2016; Vitone et al 2016; Hajibayova 2020). 
In their 2018 report, the National Academies of Sciences, 
Engineering, and Medicine (hereafter, National Academies) 
differentiates CS projects “intentionally designed to support 
science learning from the outset” from those “that were 
originally designed without explicit learning goals and have 
later been used to promote learning” (National Academies 
2018 p. 16). We focus here on the second group: those 
CS projects aimed at and marketed to the general public 
rather than higher education classrooms specifically. 
Indeed, such CS projects and introductory biology courses 
for non-majors share similar target audiences in that 
specialized scientific knowledge, interest, or experience 

among participants cannot be presumed. Accordingly, 
many projects are designed with low barriers to entry, such 
as minimal time commitments, simplified data collection 
protocols, and everyday equipment like cell phone apps 
for data gathering or analysis (e.g., Bonney et al. 2009; 
Golumbic, Baram-Tsabari, and Koichu 2020) that may 
make them attractive for non-major coursework. Studies 
of higher education students using CS have reported 
knowledge gains (e.g., Rosenberger and Aukema 2016), 
motivational changes (e.g., Kridelbaugh 2016), and deeper 
identification with science and science careers (e.g., Colón 
2016) across a wide range of biology topics. For instance, 
an international survey of higher education instructors 
who use CS in their classes described science literacy–
type benefits, including greater efficacy in scientific 
thinking and greater knowledge of the applicability of 
scientific practice (Vance-Chalcraft et al. ‘in press’). Mitchell  
and colleagues (2017) expand upon the previous work by 
showing that CS can benefit students in higher education 
classrooms by putting them in positions of responsibility 
and scientific integrity.

SELF-DETERMINATION THEORY
Despite this promise, it is unlikely that science literacy 
benefits will accrue if higher education students are not 
motivated to participate in CS. Even though studies have 
examined motivations of volunteers in the general public 
(e.g., Bowser et al. 2013; Crowston and Prestopnick 2013; 
Hiller and Kitsantas 2016; Silva et al. 2016), these studies 
are of free-choice volunteers and, therefore, cannot be 
transferred to students fulfilling graduation requirements. 
This paper uses self-determination theory (SDT) (Deci and 
Ryan 2012; Ryan and Deci 2020) to address this gap in 
the literature by exploring factors promoting motivation 
among undergraduates to continue doing CS in the future 
following an initial educational experience. 

SDT directly addresses intrinsic (internal) motivation 
through multilayered theories that attempt to identify 
individual components of motivation. Within the SDT 
framework, three psychological needs—relatedness (how 
much the student connects the educational experience 
to their lives), autonomy (how much freedom of choice 
the student has within the educational experience), and 
competence (how much the student feels they understand 
the educational experience)—must be met to promote 
intrinsic motivation. Common external motivators, such 
as grades, performance evaluations, or requirements to 
present to the class, can also impact internal motivation in 
classrooms (Ryan and Deci 2020). Fully understanding the 
motivations of students to pursue CS in their futures based 
on the educational experience of doing CS in the higher 
education classroom requires an attempt to understand 
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how the structure of the CS educational experience aligns 
with the psychological needs of SDT.

For undergraduates in introductory biology courses 
aimed at non-majors, competence and relatedness may 
be particularly important considerations. One challenge 
facing students in introductory biology courses is the sheer 
breadth of content to master: topics typically range from 
the microscopic scale of biochemistry, DNA, and cells to the 
macroscopic scale of anatomy, predator-prey relationships, 
and biogeography. These topics require different kinds 
of content knowledge, data collection techniques, and 
even technology to investigate. Although these diverse 
topics can be matched to CS projects (e.g., Wiggins and 
Crowston 2015; Vance-Chalcraft et al. ‘in press’), the 
literature has not yet explored whether students relate 
to CS differently depending on the topic at hand. Given 
that studies on course-based undergraduate research 
projects have suggested that computer-based molecular 
labs and bench-based ecological labs can differentially 
affect undergraduates’ attitudes (Kirkpatrick et al. 2019), 
it is reasonable to wonder whether the same can be said 
for molecular biology or ecological CS projects. Thus, we 
wanted to know: 

1.	 Does the scale of CS subjects, either molecular or 
ecological, relative to the “human scale” size of 
students, differentially impact undergraduates’ 
willingness to participate in future CS activities? 

2.	 To what extent do salient student-level characteristics 
(e.g., STEM or non-STEM focus, major, course grade) 
influence any effect related to molecular/ecological 
scale?

To address these questions, we present the results of 
a multilevel mixed model using undergraduate survey 
responses following CS experiences in an introductory 
biology class for non-majors. In response to the first 
question, we hypothesized that we would detect a 
significant difference in motivation for future participation 
in ecological versus molecular biology CS projects owing to 
greater familiarity with the larger-sized research subjects 
featured in ecological projects. Students interact with 
macro-scale ecological subjects, like squirrels and birds, in 
their everyday lives, whereas molecular biology subjects, 
such as protein sequences and cells, are not visible to the 
unaided eye and thus are more abstract. We anticipated 
that this difference would address the SDT requirements 
of relatedness and competence for motivation in that 
students would better relate to familiar subjects and would 
feel more competent in their knowledge about these same 
subjects. Regarding the second question, on the basis of 
prior research about student characteristics in introductory 

biology courses (e.g., Cotner, Thompson, and Wright 2017), 
we anticipated that student major tracks and individual 
student course grades would also contribute to any 
observed effects. In particular, we expected STEM-focused 
majors to positively contribute to student motivation 
because the coursework potentially related to a domain 
of interest and students in these majors already had 
competence in science.

METHODS
DATA COLLECTION
Data collection about the attitudes of higher education 
students using ecological versus molecular biological CS 
projects was accomplished through surveys of students 
enrolled in the introductory biology class for non-majors 
at a large research university in the southeastern United 
States between the years 2016 and 2019. Class sizes 
averaged 156 students during the study period (minimum 
enrollment = 34, maximum enrollment = 234).

Twice per semester, students were assigned to: 
1) choose one of the instructor-selected CS projects 
available on the SciStarter platform (Hoffman et al. 2017; 
Supplemental Table 1); 2) perform the CS project for as long 
as they wished; and then 3) complete a survey about their 
experience. One assignment focused on ecological projects 
and the other on projects that had molecular biological 
research objectives. The same projects were included 
each semester unless one was cancelled by the CS project 
managers. In those cases, another project took its place 
(see Table 1). In both the Spring and Fall semesters of 2016, 
students completed the molecular biological projects 
first and ecology projects second. For years 2017–2019, 
the ecology CS projects were done first during the Fall 
semesters, whereas during the Spring semesters, students 
typically performed the molecular biological projects first. 
This was because of shifts in the curricular order between 
Fall and Spring semesters. In line with the SDT principle 
of autonomy (Deci and Ryan 2012; Ryan and Deci 2020), 
students could select a project that most closely matched 
their interests. 

Students received complete credit for submitting the 
survey irrespective of the time spent doing CS or the quality 
of their survey responses. Knowing that the assignment 
was credit-only might have discouraged some students 
from putting forth their full effort, potentially biasing the 
data in unknown ways. For example, one known issue 
with having CS tied to a required course assignment is the 
potential for erroneous data collected by unenthusiastic 
students (Mitchell et al. 2017). SDT also suggests that having 
a task-dependent reward, such as a grade, attached to an 
assignment will generally have negative effects on intrinsic 
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motivation for the assignment (Ryan and Deci 2020). The 
instructor attempted to mitigate this hurdle by eliminating 
the judgment of quality of their survey responses. Freedom 
from a grading rubric might have allowed students to pursue 
the CS project on their own terms, adding to the autonomous 
principle of rising intrinsic motivation within SDT.

Although negativity could arise from a graded 
CS assignment, binding this assignment to a course 
requirement likely increased the number of students 
contributing data compared with simply offering extra 
credit. As such, responses may better reflect the cross-
sectional views of the class in general.

This paper is a secondary analysis of de-identified data 
from the required survey assignments matched to student 
course grade and major. Per IRB, identifying information 
such as name, age, year in school, and primary language 
were not made available, nor were known student-level 
factors such as gender (e.g., Eddy, Brownell, and Wenderoth 
2014; Cooper and Brownell 2016; Matz et al 2017), race 
(e.g., Carlone and Johnson 2007; Chen et al 2021), or first-
generation-student status (e.g., Harackiewicz et al 2014). 
The original survey consisted of three Likert-type items 
with five response options each and eight open-ended 
responses. Surveys also collected information about the 
course section and the name of the selected project. This 
analysis uses the three Likert-type items, course section 
identifier, project name, student grade, and student major.

MULTILEVEL MODELING OF COMPLEX DATA 
STRUCTURES IN EDUCATION
Classic linear regression assumes that residuals are 
independent; in other words, that each observation 

represents a unique sample. However, social science 
data, particularly in education, frequently violate this 
assumption (Rabe-Heskreth and Skrondal 2012). For 
instance, imagine a scenario in which all the children in 
a neighborhood are assigned to the same school. In this 
scenario, students are nested within the neighborhood 
which is nested within the school. A multilevel approach 
attempts to tease apart the effects of student-level 
factors (e.g., prior knowledge, motivation, gender) 
versus the effects of neighborhood-level factors (e.g., 
unemployment rates, number of grocery stores) 
versus the effects of school-level factors (e.g., teacher 
turnover, relative poverty, school-wide programming) 
by partitioning out variance among the structural levels 
(Bryk and Raudenbush 1988).

In some instances, data are multilevel but not 
hierarchical: some schools may enroll students from across 
multiple neighborhoods and some of those neighborhoods 
may send students to multiple schools. Students can 
also move to new schools or neighborhoods (Garner 
and Raudenbush 1991). In this case, students are cross-
classified within neighborhoods and also within schools, 
neither of which is subordinate to the other. Approaching 
such cases without addressing the cross-classification 
can lead to severely biased results (Ye and Daniel 2017), 
so analyses should proceed using multi-level multiple-
membership techniques designed to address cross-
classification.

Recognizing the statistical complexity of our data, 
we predicted that student endorsement of future CS 
participation is influenced by major, individual achievement, 
and the size of CS project subjects; mediated by class 

ECOLOGY YEARS UTILIZED MOLECULAR YEARS UTILIZED

Mark My Bird
(MARKBIRD, PROJID = 9)

2016, 2017, 2018, 2019 NanoCrafter
(NANOCRAFT, PROJID = 4)

2016, 2017, 2018, 2019

Season Spotter
(SEASPOT, PROJID = 11)

2016, 2017, 2018, 2019 Reverse the Odds
(REVODD, PROJID = 7)

2016, 2017, 2018, 2019

Squirrel Mapper
(SQUIRREL, PROJID = 12)

2016, 2017, 2018, 2019 NOVA RNA Lab
(NOVARNA, PROJID = 5)

2016, 2017, 2018

Natural North Carolina
(NNC, PROJID = 10)

2016, 2017, 2018, 2019 Genes in Space
(GENES, PROJID = 2)

2016, 2017, 2018

BirdEEZ
(BIRDEEZ, PROJID = 8)

2016, 2017, 2018, 2019 NanoDoc
(NANDOC, PROJID = 3)

2016 

Phylo
(PHYLO, PROJID = 6)

2017, 2018, 2019

Foldit
(FOLDIT, PROJID = 1)

2019

Table 1 Projects used throughout the survey period by content focus and years.

Note: Each project’s assigned dummy variable and project identification number appear in parentheses after the project name.
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section and project attempted; and represented as a cross-
classification multiple membership model:

DOAGAINijk = β0 + β1MAJORijk + β2GRADEi + 
β3MICROBIOi + u(3)

CLASS(i) + 
u(2)

PROJECT(i) + еi

u(3)
CLASS(i)~ N(0, σ2

u(3)) 
u(2)

PROJECT(i)~ N(0, σ2
u(2))

ei ~ N(0, σ2
e)

Table 2 displays key student- and project-level variables 
used in the analysis.

More than 40 majors were represented, ranging from 
1 case (several) to 177 cases (Psychology), with half 
of the reported majors having ten cases or fewer. We 
aggregated majors to the college level and encoded 
them as a series of dummy variables: PCM (College of 
Management, n = 490), COS (College of Sciences, n = 71), 
CHASS (College of Humanities, Arts, and Social Sciences, 
n = 1,022), CNR (College of Natural Resources, n = 127), 
CALS (College of Agriculture and Life Sciences, n = 119), 
TEXTILES (College of Textiles, n = 12), ENGCOMPSCI 
(College of Engineering, n = 145), ARTDES (College of 
Art and Design, n = 81), ED (College of Education, n = 
333), TRANSFER (students indicated that they were 
transferring between colleges, n = 62), and OTHER (no 

major, undeclared, not seeking a degree, n = 598). Dual-
major students were counted in the data for each college 
in which they were enrolled. 

One case in the data set lacked a course grade. Thirteen 
other cases lacked the response variable. These cases were 
distributed across class sections and projects without a 
discernable pattern, so they were removed from analysis. 
Analyses were performed using STATA 16 (StataCorp 2019).

After cleaning, the data consisted of 2,962 individual 
observations from 1,654 unique students across 14 class 
sections (µ = 211.517 observations) and 12 projects (µ = 
246.833 observations). More than 100 more observations 
were made for the molecular projects (n = 1,547) than 
for the ecology projects (n = 1,415). Table 3 presents the 
unclustered means and standard deviations for the three 
Likert-type items DOAGAIN, EASY, and PROJRATE. Although 
EASY measured perceptions of SciStarter rather than CS, we 
included it because all CS assignments in the course were 
exclusively coupled with SciStarter. As research on search 
engines and digital learning systems suggests ease of 
use can significantly impact students’ perceptions of their 
subject-matter learning (e.g., Cheng, 2019) and future use 
(e.g., Lavidas et al. 2019; Tseng, 2020), SciStarter might 
have affected the critical SDT principle of competence 
and thus might have impacted students’ motivation to 
participate in future CS projects.

VARIABLE DEFINITION

STUID Student identification number used to match cases to students

CLASSID Identification number unique to each class section. Since the syllabus evolved over time, students were placed in classes based 
on date stamps for the survey submission and indicated course section.

PROJID Identification number of each project.

MICROBIO Project-level dummy variable indicating whether a given project focused on molecular biology (1) or on ecology (0)

DOAGAIN *Response variable. Likert-type item (1 = low, 5 = high) indicating student endorsement of future CS participation. 

EASY Student-level Likert-type item (1 = low, 5 = high) indicating individual students’ perceived ease-of-use for the SciStarter interface

PROJRATE Student-level Likert-type item (1 = low, 5 = high) indicating a student’s overall impression of a given project

NUMENTRIES Student-level variable representing the number of completed surveys each student submitted 

GRADE Student-level continuous variable indicating course grade (100-point scale)

Table 2 Variables used in the analysis of student attitudes toward citizen science.

DOAGAIN EASY PROJRATE

ALL MOL ECO ALL MOL ECO ALL MOL ECO

Mean 2.930 2.858 3.010 3.909 3.901 3.917  3.351 3.227 3.487

SD 1.153 1.155 1.145 1.049 1.050 1.047 0.930 1.027 0.930

Table 3 Mean and standard deviation (SD) of responses to Likert-type items. 

Note: Data are presented for all projects (All), molecular biology projects only (Mol), and ecology projects only (Eco).
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ANALYSIS AND RESULTS
The overall mean for CS projects was 2,930 on a 1–5 scale 
(median score = 3, interquartile range = 2). We used a 
nonparametric Friedman test to compare unclustered 
Likert-type data from molecular biology projects 
(µDOAGAIN = 2.858) to ecology projects (µDOAGAIN = 
3.009). Results suggested a small statistically significant 
difference between the two groups (Q = 10.756, p < 0.010). 

Kruskal-Wallis tests revealed significant differences in the 
ratings for future participation (DOAGAIN) among classes (𝝌2 

= 73.290, 13 d.f., p < 0.001) and among projects (𝝌2 = 45.490, 
11 d.f., p < 0.001), suggesting possible clustering effects 
related to each. Therefore, we retained both clustering 
variables in our model. Cross-tabulation revealed that each 
project received observations from 2 to 14 classes, and each 
class contributed to between 2 and 10 projects  

Following Leckie (2013), the unconditional model 
was conceived as a two-level cross-classified model 
with students nested in classes and projects (Figure 1). A 
likelihood ratio (L-R) test (𝝌2 = 47.540, 1 d.f.; p < 0.0001) 
indicated that a multi-level model was preferred to 
a simpler linear regression. L-R tests comparing the 
unconditional model to separate students-within-classes 
(𝝌2 = 4.260, 1 d.f.; p < 0.05) and students-within-projects 
(𝝌2 = 26.180, 1 d.f.; p < 0.001) models indicated that class- 
and project-level clustering were significant and should be 
retained. Clustering to account for possible class-project 
interactions did not significantly improve model fit (𝝌2 = 
0.140, 1 d.f.; p = 0.706) and therefore was dropped to avoid 
overparameterization. This resulted in a fully unconditional 
model (M1 in Table 4) with approximately 2.5% of the 

variance ascribed to class effects, 0.5% of the variance 
ascribed to project effects (ICC = 0.031), and µDOAGAIN = 
2.920.

Next, student factors were inputted into the model 
(M2 in Table 4). How user-friendly students rated the 
SciStarter interface (EASY) and how a student rated 
an individual project (PROJRATE) were identified as 
significantly contributing to variance in the ratings for 
future CS participation (DOAGAIN; all p’s < 0.0001). A 
L-R test suggested that adding student-level covariates 
significantly improved the model fit compared to the 
unconditional model (𝝌2 = 1602.240, 15 d.f.; p < 0.0001). 
Given that we would be using the same data set and large 
sample size (n/p > 40) for all models, we opted to use the 
AIC score (Akaike 1998) rather than the AICc metric to 
guide model selection (Burnham and Anderson 2004). AIC 
scores for each model (M1 = 9207.242, M2 = 7637.005) also 
indicated improved fit over the fully unconditional model. 

To understand project effects separate from student-
level effects, we ran the full model, including the project-
level designation of ecological or microbiological subjects 
(MICROBIO) as well as the project dummy variables to tease 
out any differences among specific projects (M3). The full 
model returned a similar pattern to the student-level model, 
with only ease of use (EASY) and project rating (PROJRATE) 
identified as significant (all p’s < 0.0001). The project-level 
factor MICROBIO was no longer shown to be significant 
once we accounted for clustering. A L-R test comparing M2 
and M3 did not indicate a significant difference between 
the two (𝝌2 = 15.950, 12 d.f.; p = 0.193), and including all 
covariates actually increased the M3 AIC score.  

Figure 1 Data diagram showing the cross-classified structure.

https://doi.org/10.5334/cstp.426


7Bedell and Gates Citizen Science: Theory and Practice DOI: 10.5334/cstp.426

M1: FULLY 
UNCONDITIONAL, 
CROSS-CLASSIFIED

M2: M1+ 
STUDENT-LEVEL 
PREDICTORS 

M3: M2 + 
PROJECT-LEVEL 
PREDICTORS

M4: FINAL MODEL 
AFTER BACKWARD 
STEPWISE DELETION

DOAGAIN 2.920 –0.160 –0.124 –.153

STUID –5.000e–08 –5.980e–08

EASY 0.135*** 0.131*** 0.134***

PROJRATE 0.686*** 0.690*** 0.686***

GRADE 0.356 0.334 0.339

NUMENTRIES –0.018 –0.016

PCM –0.001 –0.0003

COS 0.187 0.183 0.191

CHASS 0.017 0.015

CNR –0.048 –0.048

CALS –0.033 –0.036

TEXTILES 0.210 0.194

ENGCOMPSCI 0.100 0.106 0.129

ARTDES 0.043 0.036

ED 0.110 0.110 0.112*

TRANSFER 0.080 0.081

OTHER –0.017 –0.021

MICROBIO 0.038

FOLDIT –0.215

GENES –0.113 –0.116*

NANDOC 0.275

NANOCRAFT –0.109 –0.100

NOVARNA –0.119 –0.121*

PHYLO 0.004

REVODD 0.061

BIRDEEZ –0.037

MARKBIRD –0.076 –0.095*

NNC –0.022

SEASPOT 0.043

SQUIRREL (Reference)

Estimated Variances

CLASSID .0340 0.016 0.012 0.015

PROJID .007 0.001 1.630e–20 3.180e–20

RESIDUAL 1.293 0.755 .752 .754

Variance Coefficients

CLASSID 0.026 0.021 0.015 0.020

PROJID 0.005 0.002 2.130e–20 4.130e–20

RESIDUAL 0.969 0.978 0.985 0.980

ICC (CLASSID + PROJID) 0.031 0.023 0.015 0.020

AIC 9207.242 7637.005 7645.052 7617.878

Δ AIC –1589.360 –19.127 –27.174 0

Table 4 Coefficients by model.

Note: Significant results are bolded. * p < .0.05 ** p < 0.01 *** p < 0.001.
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We then employed backward stepwise deletion to 
fit the model using AIC scores (M4). Ease of use (EASY; 
p < 0.0001), project rating (PROJRATE; p < 0.0001) and 
enrollment in a teacher-certification program (ED; p < 
0.050) were identified as significant student-level factors. 
Final course grade (GRADE) and enrollment in either the 
College of Sciences (COS) or Engineering (ENGCOMPSCI) 
were not significant, but were retained owing to AIC. 
Although MICROBIO dropped out of the model, three 
projects (GENES, NOVARNA, and MARKBIRD) were identified 
as significant project-level factors (all p’s < 0.050). A fourth 
project, NANOCRAFT, though not significant, was also 
retained owing to AIC.

Results should be interpreted cautiously, particularly 
when considering the between-group effects, owing to 
the small numbers of class sections and projects (Luo 
2013; Chung et al. 2018). Furthermore, doing multi-level 
analysis with Likert-type responses tends to underestimate 
variances, thus increasing chances of a Type II error (e.g., 
Beal and Dawson 2007; Grilli and Rampichini 2011). 

DISCUSSION

We hypothesized that ecological CS projects would be more 
likely than molecular biological ones to promote interest in 
further CS participation among students in an introductory 
biology course for non-majors because students would feel 
more connected to and competent about subjects they 
see without technology (e.g., a person might feel more 
connected to and competent about leaves compared with 
cancer genes). Although our initial tests appeared to provide 
support for our hypothesis, using statistical techniques 
to account for clustered data revealed a more complex 
picture. On the basis of our results, we present here three 
key findings that suggest our original framing of relatedness 
and competence might have been overly narrow.

CONTENT FOCUS IN CITIZEN SCIENCE MAY BE 
LESS IMPORTANT THAN PROJECT STRUCTURE
Though content focus (molecular biological versus 
ecological) was not significant on its own, three specific 
projects in molecular biology and ecology significantly 
affected how students viewed their future participation: 
Mark My Bird, NOVA RNA Lab, and Genes in Space. 
Assessment of the qualitative responses by students is yet 
to be performed, but we provide preliminary suggestions 
that may partially explain commonalities between these 
projects. It seems that for the latter two projects, the video 
game interfaces positively influenced student perceptions. 
Students also appreciated how easy Genes in Space 
was to understand. On the other hand, many students 

who participated in Mark My Bird found the instructions 
confusing even as they commented positively on the 
interesting way to observe bird diversity. 

These responses highlight the importance of relatedness 
and competence, though in ways we had not anticipated. 
Even though we had hypothesized that subject matter 
would be key, students responded to design features that 
felt familiar (e.g., video game interfaces), sparked their 
interest (e.g., novel observation techniques), and helped 
them complete a task (e.g., instructions). Since students 
had some autonomy to select projects, we cannot rule 
out our original hypothesis about subject matter, but this 
finding suggests we need to expand our thinking around 
the sources of relatedness in CS project design.

One question that our results raise is whether and 
how virtual versus fieldwork tasks impact motivation. 
Unfortunately, we were not able to compare fieldwork 
to virtual projects because BirdEEZ was the only project 
that did not have a virtual option available for students. 
However, future research can leverage projects like Squirrel 
Mapper that offer both fieldwork and virtual task options. 
Even just within the virtual realm, there are a number of 
task design approaches that are worth exploring, including 
extreme gamification to the point of being video games 
(e.g., Genes in Space), more directly foregrounding the 
science in reconstructing the study subject (e.g., Phylo), 
classifying photographs (Squirrel Mapper), and using digital 
mapping tools (Mark My Bird). Utilizing planned contrasts 
and random assignments to explore how students relate to 
such specific design features, how different choices affect 
student competence, and how these work in tandem to 
promote internal motivation for CS can yield critical insights 
for educators and project designers alike.

MAJOR HAD MIXED INFLUENCES ON STUDENTS’ 
PERCEPTIONS OF FUTURE CITIZEN SCIENCE 
PARTICIPATION
On the basis of the work done by Cotner and colleagues 
(2017) to explore differences between students majoring 
in biology versus those who are non-STEM majors, we had 
expected that enrollment in the College of Sciences (COS) and 
College of Engineering (ENGCOMPSCI) would be associated 
with student endorsement of future CS participation, even if 
not significantly. However, it was surprising that enrollment 
in the College of Life and Agricultural Sciences (CALS) or the 
College of Natural Resources (CNR) were not retained in the 
final model. Even more surprising was that enrollment in 
a teacher-certification program (ED) was the only major-
related factor that returned as significant.

Considered from an SDT perspective, however, these 
results align with the principles of relatedness and 
competence. To begin, prior research with pre-service 
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teachers has shown they approach CS as a tool to use with 
their own students (Scott 2016). The education students in 
our study might have approached this assignment similarly, 
endorsing future participation in CS as a function of their 
intended career. This result suggests that relatedness, 
combined with a desire for competence, may motivate CS 
participation among pre-service teachers. 

However, when we reviewed the pool of students from 
CALS and CNR, we realized the available CS choices were less 
clearly tied to outcomes emphasized in programs such as 
Agribusiness Management (CALS) and Sports Management 
(CNR). Students enrolled in these programs may not have 
perceived the project choices available to them in this 
particular course as related or relevant to their own goals. 
Students in these STEM-adjacent, management-focused 
programs may also have felt less competent in science than 
we anticipated on the basis of college enrollment alone. 

These results suggest improvements for future 
surveys. First, adding a pre-survey can identify changes 
in motivation over time due to CS experiences in class. 
Second, adding items about expectations can help provide 
insight into relatedness. Third, adding items about prior 
science coursework and major-required coursework in 
science can provide insight into competence and inform 
researchers looking for ways to aggregate majors based on 
STEM intensity rather than administrative units.

INDIVIDUAL EXPERIENCES MAY NOT ALIGN TO 
ATTITUDES ABOUT FUTURE PARTICIPATION
Lastly, we were surprised that the mean ratings for 
individual projects (PROJRATE) and for perceived ease of use 
(EASY) were higher than those for future CS participation 
(DOAGAIN) across categories (see Table 3) because we 
supposed that a student would rate the likelihood of 
repeating a positive experience at least as high as the 
experience itself and because of research highlighting the 
importance of ease of use for digital learning tools (Lavidas 
et al. 2019). In light of the results, examining the disconnect 
between individual educational experiences with CS 
and future CS participation through SDT is instructive. A 
single encounter with a CS project, as designated in the 
assignment studied here, likely did not invoke feelings of 
mastery or competence. Moreover, undergraduates might 
not have perceived the CS projects offered to them as 
sufficiently related to their own lives, interests, goals, or 
even the course content to warrant future participation. As 
Ryan and Deci (2020) show, if basic psychological needs for 
relatedness and competence are not met in the classroom, 
internal motivation suffers. 

In light of these experimental results and theoretical 
considerations, we propose that instructors wishing to use 
CS in their classrooms take careful stock of the relationships 
among the projects chosen, the class activities, and the lives 

of the students to intentionally ground assignments in the 
principles of relatedness and competence. Some possible 
ways to more fully integrate CS projects into the educational 
experience of students, and thereby increase relatedness 
and competence around CS, include reading project-
related media and journal articles, learning about the 
research team, mapping contributions to the project, using 
collected CS data in class, etc. These recommendations 
align with the National Academies’ recommendations that 
educators can support learning through CS by intentionally 
leveraging the built-in structures and supports that already 
exist in classrooms (2018).

IMPLICATIONS FOR FUTURE RESEARCH
The CS survey was planned to be a non-random instrument 
used in class rather than a data collection instrument 
for research. Although the instructor tried to provide 
autonomy by way of having students choose the projects 
and the amount of time they attempted each project, 
attaching an assignment grade (albeit credit/no credit) 
might have made some students feel as though they 
were not in control, which could lead to negative feelings 
about the CS experience (Vance-Chalcraft et al. ‘in press’).  
Conversely, connecting the assignment to a grade might 
have brought in participants who would not have otherwise 
tried CS. Additional research is necessary to understand 
the pros and cons of increasing students’ exposure to CS 
through external motivators such as grades.

The issue of non-random assignment raises another 
obvious extension of this study. To better understand the 
kinds of CS experiences that contribute toward increased 
science literacy in non-STEM majors, future research 
should methodically test different content orientations and 
project features to explore how those combinations affect 
intrinsic motivation. Though prior research about CS in 
higher education has focused largely on general principles, 
our research shows how studies can provide specific design 
feedback. Thus, we add our voices to literature calling for 
research into identifying project design features that best 
encourage future CS participation (e.g., Bonney et al. 2009; 
Tinati et al. 2015; National Academies 2018; Golumbic, 
Baram-Tsabari, and Koichu 2020).

Such research can put students in positions of 
responsibility for improving CS and could lead to the kinds 
of cooperation among students, course instructors, and CS 
project management described by Vance-Chalcraft et al. 
(‘in press’) and the National Academies (2018). However, for 
such collaborations to occur, it will be necessary for project 
managers to have open channels of communication with 
users of their project (e.g., Golumbic, Baram-Tsabari, and 
Koichu 2020). In fact, opening communication between 
project users and the sponsoring research team could 
alleviate some power differentials between these parties, 
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thereby making CS even more equitable and ethical (e.g., 
Riesch and Potter 2014). 

CONCLUSION

With its low barriers to entry and wide range of possible 
projects, CS may be a useful tool for higher education 
instructors seeking to support science literacy, but effectively 
incorporating CS into an introductory course for non-STEM 
majors with the aim of promoting intrinsic motivation for 
future CS participation is more complicated than choosing 
ecological versus molecular biological projects. Moreover, 
our analysis suggests that commonly-used academic 
predictors such as higher education major/field or final 
course grades do not reliably predict attitudes about 
future involvement in CS. Instructors will need to be more 
cognizant of social and personal aspects of the classroom 
environment, including how to promote internal motivation 
through targeted external motivations and purposefully 
nurturing the central components of SDT (autonomy, 
relatedness, and competence) within a CS context. 
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