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The increasing number of citizen science projects around the world brings the need to evaluate the effec-
tiveness of these projects and to show the applicability of the data they collect. This research describes 
the Wabash River Sampling Blitz, a volunteer water-quality monitoring program in Central Indiana devel-
oped by the Wabash River Enhancement Corporation (WREC). Results indicate that field test strips for 
nitrate+nitrite-N read by volunteers generally agree with lab-determined values. Orthophosphate results 
are less transferable owing to low observed concentrations, although the field test strip values from 
unfiltered samples consistently over-predicted the lab values. Hierarchical cluster analysis (HCA) applied 
to volunteer-collected data groups sampling sites into meaningful management clusters that can help to 
identify water-quality priorities across the watershed as a proof of concept for watershed managers. 
Results of the HCA provide an opportunity for WREC to target future programs, education, and activities 
by analyzing the data collected by citizen scientists. Overall this study demonstrates how citizen science 
water quality data can be validated and applied in subsequent watershed management strategies. 
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Introduction
Freshwater ecosystems provide many benefits to society, 
including food, water, flood control, aesthetics, and recre-
ation (Finlayson et al. 2005). Despite state and federal reg-
ulations aimed at protecting these resources, 52% of all 
assessed streams in the United States are impaired (USEPA 
2012). Recognizing the degraded state of their waters, 
many public stakeholders across the world have formed 
watershed associations in efforts to improve the health of 
their local watersheds (Cline and Collins 2003). Watershed 
groups have been shown to enhance their community’s 
chance of receiving funds to improve their watershed and 
to develop programs to protect and enhance water qual-
ity (Cline and Collins 2003). However, monitoring water 
quality is not only complex logistically, it is also expen-
sive (Maas et al. 1991). Many watershed groups turn to 

citizen science to both engage the public and collect large 
amounts of data that they need to address their concerns. 
For example, a 9th grade class in New Jersey worked with 
their local watershed partnership to determine their com-
munity’s willingness to pay for the restoration of ecosys-
tem services in the watershed (Nicosia et al. 2014).

Citizen science involves engaging and collaborating 
with members of the public to gather data to address sci-
entific problems (Cohn 2008; Dickinson et al. 2012; Miller-
Rushing et al. 2012). Recently, citizen science projects have 
grown from a few examples to thousands (Conrad and 
Hilchey 2009; Shirk et al. 2012). Many benefits have been 
identified as reasons for including citizens in scientific 
work, including increased public knowledge of science, 
ability to capture large amounts of data across space and 
time, advancement of scientific knowledge, lowered cost 
of collection and processing, increased social capital, and 
government and ecosystem benefits (Bonney et al. 2009; 
Cohn 2008; Conrad and Hilchey 2011; Silvertown et al. 
2009). Kolok and Schoenfuss (2011) specifically describe 
citizen science as a meaningful approach for monitoring 
waterways. Despite all of the benefits that citizen science 
projects provide, there are still continued concerns about 
the validity and subsequent application of the data col-
lected (Bonney et al. 2014; Conrad and Hilchey 2011; 
Dickinson et al. 2010; Kim et al. 2011; Kolok et al. 2011). 
Specifically, Conrad and Hilchey (2009) note that citizen 
science data often are not used in the decision-making 
process, either because of concerns with collection meth-
ods or the inability to get data to decision-makers.

*	Department of Agricultural & Biological Engineering, Purdue 
University, West Lafayette, Indiana, USA; Graham Sustainability 
Institute, University of Michigan, Ann Arbor, Michigan, USA

†	Wabash River Enhancement Corporation, Lafayette, Indiana, USA
‡	Department of Agronomy, Purdue University, West Lafayette, 
Indiana, USA

§	Department of Agricultural & Biological Engineering, Purdue 
University, West Lafayette, Indiana, USA

||	Department of Earth, Atmospheric, & Planetary Sciences and 
Department of Agricultural & Biological Engineering, Purdue 
University, West Lafayette, Indiana, USA

Corresponding author: Rebecca Logsdon Muenich  
(rlogsdon@umich.edu)

http://dx.doi.org/10.5334/cstp.1
mailto:rlogsdon@umich.edu


Muenich et al: The Wabash Sampling BlitzArt. 3, page 2 of 15  

Many examples of citizen science for monitoring water 
quality exist in the peer-reviewed scientific literature  
(Au et al. 2000; Buytaert et al. 2014; Canfield et al. 2002; 
Fore at al. 2001; Lottig et al. 2014; Maas et al. 1991; 
Nicholson et al. 2002; Overdevest et al. 2004; Peckenham 
et al. 2012; Savan et al. 2003) and more certainly exist in 
practice. In assessing the validity of volunteer-collected 
and volunteer-analyzed water chemistry data, Nicholson 
et al. (2002) found mixed results depending on the vari-
able, though their assessment was between yearly means 
of two different datasets, not direct sample comparison. 
Savan et al. (2003) found that 40% of their citizen sci-
ence program’s water chemistry variables failed quality 
control checks, leading them to use biological meas-
ures of water quality over chemical measures. Fore et al. 
(2001) and Canfield et al. (2002) both found no signifi-
cant difference between volunteer collected biological 
and chemical water quality data, while Maas et al. (1991) 
chose to run their water chemistry samples through a 
university lab to avoid volunteer error. Au et al. (2000) 
found that local high school students were able to evalu-
ate toxicity of Escherichia coli (E. coli) similarly to experts 
after they were trained, and Peckenham et al. (2012) 
determined that middle to high-school aged students 
were able to accurately analyze pH and conductivity, but 
that additional quality assurance was needed for hard-
ness, chloride, and nitrate testing. There is still a need 
to assess current water monitoring programs and pro-
vide examples of applications of citizen science to collect 
and analyze water quality data for improved watershed 
management.

The overall goal of this research is to address two of 
the main issues surrounding citizen science: data valid-
ity and data application. The first objective is to compare 
volunteer-collected and volunteer-analyzed water qual-
ity data to volunteer-collected and laboratory-analyzed 
water quality data to assess the validity of the volunteer-
analyzed data. The second objective is to provide a proof 
of concept of how the data collected by volunteers can be 
used by watershed groups to target management strate-
gies and priorities. 

Methods
Program description
The Wabash River Enhancement Corporation (WREC) is a 
501c3 nonprofit agency established in 2004 and based in 
Lafayette, Tippecanoe County, Indiana (www.wabashriver.
net). The goal of WREC is to lead efforts within the com-
munity to improve and enhance the local Wabash River 
corridor as well as to engage and educate the community 
in the implementation of projects, programs, and activi-
ties that enhance the Wabash River ecosystem. WREC has 
established many programs to achieve their goals, includ-
ing cost-share programs for urban and agricultural best 
management practices, green business certification, and 
riverfront development. 

In 2009, WREC—in partnership with researchers at 
Purdue University—established a citizen science water 
quality monitoring program called the Wabash Sampling 
Blitz (Blitz). The two main goals of the Blitz are first, to 

provide a hands-on opportunity for the community to 
experience the Wabash River and its tributaries through 
citizen science, and second, to obtain uniform, simul-
taneous water quality data throughout the area that 
WREC serves. This large-scale and simultaneous collec-
tion of data can help by providing “hot spot” identifica-
tion for future watershed priorities (Kolok et al. 2011). 
The Blitz occurs twice a year in the spring (April) and 
fall (September), when approximately 250 volunteers 
sample 206 sites within the Region of the Great Bend 
of the Wabash River Watershed (Figure 1). Land use in 
the watershed is mostly row-crop agriculture (corn and 
soybean), but the watershed is also host to the urban 
areas of West Lafayette and Lafayette (~100,000 popu-
lation). Since its establishment in 2009 and until the 
fall of 2013, the Blitz has benefited from the contribu-
tion of 889 unique community volunteers (192 repeat 
volunteers) giving more than 3,000 hours of their time  
(Figure 2). 

The Blitz is held for approximately four hours on one 
afternoon. Volunteers may arrive at any time during the 
sampling window. Volunteers are pre-assigned to one of 
three staging locations where they either meet up with 
or are matched with at least one other sampling partner. 
Staging location organizers detail the sampling methods 
and objectives with volunteer groups. Volunteers then 
travel in their own vehicles to 3–4 sites where they col-
lect water samples in stream, measure water transpar-
ency with a transparency tube, and measure in-stream 
water temperature. Volunteers then return to their stag-
ing location where additional volunteers help them fil-
ter a portion of their samples to use in subsequent lab 
analyses. The remainders of their water samples are used 
to test for nutrients and contaminants on-site using field 
test strips. Volunteers then color in selected constitu-
ent (nitrate+nitrite-N and water temperature) levels on 
a map of the watershed so they can easily compare their 
results to other portions of the watershed, as well as to 
data from the previous year. The constituents tested in 
lab and by participants have varied from year to year 
depending on funding availability, but many have been 
consistently analyzed (Table 1). The Purdue University 
Soil Science Laboratory used an AQ2 Discrete Analyzer 
to measure concentrations of ammonia (mg/L; AQ2 
method EPA-103-A Rev. 10), nitrate+nitrite-N (mg/L; 
AQ2 method EPA-114-A Rev. 9), and orthophosphate-
P (mg/L; AQ2 method EPA-118-A Rev. 5-subsequently 
converted to orthophosphate). Dissolved organic carbon 
concentration (mg/L) was measured with a Shimadzu 
TOC-V CSH. Field test strips were used by volunteers 
to determine concentrations for nitrate+nitrite-N  
(mg/L; Hach Aquacheck Cat. 27454-25) and orthophos-
phate (mg/L; Hach Aquacheck Cat. 27571-50), and pH 
levels (Sigma P-4411). Spring 2010 samples only were ana-
lyzed using WaterWorks Nine-Way Test Kits that included 
pH, nitrate+nitrite-N, and other tests. Volunteers also 
used a transparency tube, with a secchi disc, and marked 
in units of cm to record in-stream transparency and took 
water temperature readings using alcohol thermometers 
(°C).
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Comparison of volunteer and lab-determined data
For this study, the volunteer-collected nitrate+nitrite-N 
and orthophosphate sample concentrations were com-
pared to the lab-determined sample concentrations 
because these two variables had the most field and lab 
data available. The field test strips are used on unfiltered 
samples while the lab analyses are performed on samples 
filtered through a 0.45 micron glass fiber filter. While this 
should not impact the nitrate+nitrite-N comparisons, it 
could lead to volunteer overestimation of orthophosphate 
due to the affinity of phosphorus to sorb to sediments 
(Zhou et al. 2005). However, given the high transparency 
of the water samples on average (Table 3), this may not 
have a large influence on the readings. Another issue with 
comparing these datasets is that the field test strips used 
by volunteers have a binned, colored scale comparison for 
volunteers to read the level of the constituent. These bins 
essentially make the data provided by volunteers categori-
cal. Thus, in order to compare the two datasets, the lab-
determined data were binned to match the test strips in 

order to make them categorical as well (Table 2). The test 
strip scales provide a single concentration value associ-
ated with each color, which was assumed to represent the 
mid-point of the represented concentration range. Bins 
were therefore centered around the test strip concentra-
tion values. For example, the first nitrate+nitrite-N bin 
ranges from zero to halfway between the first and second 
concentration value (0.5). Because nitrate and nitrite are 
combined from the lab analysis, the field strip nitrate and 
nitrite values were also added together. Because nitrate 
concentrations are larger and because most volunteer-
read nitrite values were close to zero, nitrate values were 
used to make the bins. 

Once the datasets were categorized as described in 
Table 2, three measures of agreement were used to 
determine how well the volunteer-read data compared 
with actual lab concentrations: The percent agreement, 
the unweighted and weighted Cohen’s Kappa Statistic 
(hereafter referred to as Kappa), and the unweighted and 
weighted Bangdiwala B statistic (hereafter referred to as B).  

Figure 1: Location and land-use of the Great Bend of the Wabash River Watershed from the 2001 United States Geological 
Survey National Land Cover Dataset.
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Lab analysis (completed 
by professionals)

Fall 
2009

Spring 
2010

Fall 
2010

Spring 
2011

Fall 
2011

Spring 
2012

Fall 
2012

Spring 
2013

Fall 
2013

Dissolved organic carbon  
(DOC; mg/L) 

x x x x — x x — x

Nitrate+nitrate-N (mg/L) x x x x x x x x x

Orthophosphate (mg/L) x x x x x x x x x

pH — — — — — x* — — —

On-site analysis (completed 
by volunteers)

Fall 
2009

Spring 
2010

Fall 
2010

Spring 
2011

Fall 
2011

Spring 
2012

Fall 
2012

Spring 
2013

Fall 
2013

Nitrate+nitrite-N strip (mg/L) x x x x x x x x x

Orthophosphate strip (mg/L) x — — — — — x x x

pH strip x x x x x — x x x

Temperature (°C) x x x x x x x x x

Transparency tube (cm of 
visibility)

— — x x x x x x x

Table 1: List of water quality data measured in the lab and field for each of the Blitz events. An “x” indicates the 
constituent was measured, a “—” indicates that it was not measured.

*In Spring 2012, pH was measured by a Purdue lab technician using the test strips due to contaminated test strips at 
staging locations.

Figure 2: Total number of volunteers and hours worked 
by volunteers for each Blitz event (top) and the number 
of Blitz events in which unique volunteers have partici-
pated (bottom); the sum of all bars on the bottom figure 
indicates the total number of unique volunteers who 
participated in the Blitz events from the fall of 2009 to 
the fall of 2013.

Three measurements were chosen to provide more cer-
tainty of the conclusions and to demonstrate multiple 
methods that can be used to assess agreement. As a first 
order evaluation, the exact percent agreement and the 

percent agreement within one category were calculated 
to provide a straightforward assessment of the percent of 
volunteer-read observations that fell exactly into the same 
bin as lab-analyzed values (exact percent agreement) or 
the percent of observations that fell into the same bin or 
one bin higher or lower of lab-analyzed values (percent 
agreement within one category). The Kappa statistic and 
the B statistic are two different ways to evaluate the agree-
ment between two independently classified observations, 
provided the datasets have the same categories (Munoz 
and Bangdiwala 1997). The B and Kappa statistics both go 
beyond percent agreement by taking into consideration 
that some agreement could occur by chance (Banerjee 
et al. 1999; Munoz and Bangdiwala 1997). The B statis-
tic is calculated based on a graphical “area of agreement” 
whereas the Kappa statistic is based on the observed pro-
portion of agreement (Munoz and Bangdiwala 1997). The 
higher the Kappa and B statistics, the better the agree-
ment between the two datasets. The Kappa statistic is also 
known to be more conservative in measuring agreement 
when most values fall into one category, known as the 
prevalence problem, which is important for interpretation 
(Hallgren 2012; Viera and Garrett 2005). The unweighted 
statistics only compare how well the two observation sets 
match up for each category bin. The weighted statistics 
consider how far the observations are from exact agree-
ment (i.e., within one or two categories). More weight 
is thus given to agreement in categories closer to exact 
agreement. The weighted and unweighted Kappa and B 
statistics were determined for each Blitz, as well as for 
all Blitz events combined using the ‘vcd’ package of R 
(Meyer et al. 2014). The interpretation guidelines devel-
oped by Munoz and Bangdiwala (1997) were then used 
to determine the qualitative level of agreement. Lastly, 
to further evaluate the levels of agreement between the 
field and lab concentrations, bubble plots were created 
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in R. These plots provide a visual interpretation of agree-
ment between two observed datasets. Perfect agreement 
is shown along the upward diagonal of the plot, with the 
number of data points that fall within a category provided 
in each bubble and proportional to bubble size. 

Cluster analyses
The second objective of this research was to utilize data 
collected from the Blitz events (both volunteer-analyzed 
and lab-analyzed) to help target outreach and education 
within the watershed. Because multiple variables were 
available over the period of nine Blitz events over five 
years at 206 sites, multivariate cluster analyses techniques 
were employed to examine the large dataset. Cluster 
analysis is a multivariate statistical technique that can aid 
in interpreting very large datasets by grouping objects 
(e.g., sampling sites) with similar characteristics together, 
and is a common tool used in riverine systems (Bierman 
et al. 2011). While many studies have used cluster analy-
sis techniques to interpret water chemistry data (Alberto 
et  al. 2001; Daughney et al. 2012; Güler et al. 2002;  
Kim et al. 2005; Mavukkandy et al. 2014; Najar et al. 2012; 
Pati et al. 2014; Shrestha and Kazama 2007; Simeonov 
et  al. 2003; Singh et al. 2004; Singh et al. 2005; Templ 
et al. 2008; Wang et al. 2013; Wang et al. 2014), none of 
these studies were conducted as part of a citizen science 
effort or used data collected by citizen science volunteers.

Six variables that had the most data available were used 
in the cluster analyses. Variables were first pre-tested to 
see if the fall and spring Blitz samples had different means, 
as temporal variation has been shown to be important in 
cluster analysis (Gamble and Babbar-Sebens 2012). All 
observations for a given variable in the spring were tested 
versus all observations for a given variable in the fall using 
two sample t-tests (Table 3). All six variables showed sig-
nificant differences in fall and spring values, so these were 
separated into different variables (i.e., fall pH and spring 
pH were treated as two separate variables). The individual 
sampling event observations were averaged into fall and 
spring variables for each location, because some sites were 
not sampled in a given year owing to low/high water lev-
els, site inaccessibility, or a lack of volunteers. Thus, the 
final cluster analysis was completed to categorize each 
sampling location based on its average spring and fall 
water quality (12 variables, 206 sites). 

There are many types of clustering techniques; however, 
for this project hierarchical clustering was employed as it 
has been previously applied to the classification of water 
quality data and is the most common approach (Shrestha 
and Kazama 2007). Hierarchical clustering connects simi-
lar data points based on a chosen distance measure and 
seeks to minimize within-cluster variation and to maxi-
mize between cluster variations. There are two main types 
of hierarchical clustering: Agglomerative, starting with 
individual data and grouping like observations, and divi-
sive, starting with all data in one group and then divid-
ing into groups. An agglomerative technique was used 
because these methods are very efficient (Alberto et  al. 
2001) and often have been used for water chemistry clus-
tering. Before the cluster analysis was completed, the 
variables were transformed to achieve normal distribution 
using either a log10 transformation or a three-parameter 
lognormal or log10 transformation (Table 4) and then 
standardized to meet the normality and equal variance 
assumptions of cluster analysis (Güler et al. 2002). The 
cluster analysis was completed using R statistical software 
employing the Ward’s Method using a Euclidean distance 
measure (Alberto et al. 2001; Güler et al. 2002; Kim et al. 
2005; Shrestha and Kazama 2007; Simeonov et al. 2003; 
Singh et al. 2004; Singh et al. 2005). Cluster numbers were 
determined using Dmax*0.66 as the cutoff criteria where 
Dmax is the maximum distance between clusters (Singh et 
al. 2005). A subsequent principal components analysis 
(PCA) was used to identify important variables in the clus-
ter analysis (see the Supplementary Materials for details). 
Principal components analysis is most often employed to 
reduce a large dimension dataset into smaller dimensions 
by creating combinations of variables called principal 
components (Güler et al. 2002). Boxplots summarizing 
the distribution of the variables which contributed most 
to principal component loadings were constructed to 
examine the results of the cluster analysis. 

Results
Comparison of volunteer and lab-determined data
There was a good agreement for nitrate+nitrate-N between 
the volunteer-analyzed and lab-analyzed data (Figure 3). 
The exact (same bin) percentage agreement between the 
two datasets for nitrate+nitrite-N was 55% and went up 
to 84% if considering agreement within one category, i.e., 

Nitrate-N test strip
scale value (mg/L)

Assigned nitrate+nitrite 
bins (mg/L)

Orthophosphate test strip 
scale value (mg/L)

Assigned orthophosphate 
bins (mg/L)

0.0 <0.5 0.0 <2.5

1.0 0.5–1.5 5.0 2.5–10.0

2.0 1.6–3.5 15 10.1–22.5

5.0 3.6–7.5 30 22.6–40.0

10.0 7.6–15.0 50 >40.0

20.0 15.1–35.0

50.0 >35.0

Table 2: Bins used to compare volunteer-determined and lab-determined concentrations for nitrate+nitrite-N and 
orthophosphate.
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Water Quality Variable Fall Mean Spring Mean p-value

Nitrate+nitrite-N (mg/L) 1.15 4.39 <2.2e-16

Orthophosphate (mg/L) 0.30 0.04 2.03e-07

Temperature (°C) 16.5 12.5 <2.2e-16

Dissolved organic carbon (mg/L) 3.66 2.88 1.54e-05

pH 7.31 7.97 1.72e-03

Transparency (cm) 81.5 95.6 1.83e-07

Table 3: Fall and spring mean comparison using a two sample t-test. Bold indicates the significantly higher value.

Normalization Technique Water Quality Variable Transformed

no transformation (already normally distributed) fall pH, spring pH, fall temperature, spring temperature

log10 transformation fall dissolved organic carbon, spring dissolved organic carbon

three parameter lognormal transformation; shift parameter 
determined using a quantile lower bound estimator

fall nitrate+nitrite-N, spring nitrate+nitrite-N, fall orthophosphate, 
spring orthophosphate

three parameter log10 transformation; shift parameter  
estimated as 1 plus data maximum

fall turbidity, spring turbidity

Table 4: Transformations used to normalize variables prior to cluster analysis.

Figure 3: Bubble plot showing agreement between field 
(volunteer readings) and lab (professional analyses) esti-
mated nitrate+nitrite-N for all Blitz events. The number 
inside the bubble indicates how many observations fell 
into that category.

the volunteer-read concentrations fell within one bin of 
the lab-determined values (Table 5). The Kappa and B sta-
tistics show that field strip volunteer-read nitrate+nitrite-
N concentration data agree moderately to substantially 
well (Munoz and Bangdiwala 1997) with lab-determined 
values most of the time (Figures 3 and 4). As seen in 
Figure 3, most observations fell into the lowest bin. This 
was especially true for the fall of 2013, for which the B 
statistics are high while the Kappa statistics are low. This 
is likely because the Kappa statistic does not do well when 
there are very few categories (Viera and Garrett 2005). The 
low Kappa and B values in the spring of 2010 are likely 

due to the fact that different test strips were used in this  
Blitz than in all other Blitz events. This change in strips 
may have led to incorrect readings by volunteers, or these 
strips could have been faulty. Because of this, overall 
statistics were calculated both with (“All”) and without  
(“All-S10”) those values. 

The bubble plot illustrating the agreement between 
volunteer- and lab-analyzed orthophosphate values shows 
that the range of the data was even lower than that of the 
nitrate+nitrite-N data (Figure 5). The overall percentage 
agreement was only 33%, but went up to 99% if consid-
ering agreement +/- one bin (Table 5). The Kappa and 
unweighted B statistics for the orthophosphate compari-
son are fair to moderate overall (Figure 6). This is because 
most of the data were below 5 mg/L, thus putting them 
into one of the lowest two bins (Figure 5). The weighted 
B statistic is very good because all except a few of the data 
points were within the lower two categories. Because 
the actual orthophosphate levels fell primarily into the 
lower category, the results of this comparison may not 
be broadly transferable to other studies. Although the 
majority of samples were overestimated, the majority of 
samples were also within one bin +/- bin, indicating that 
the volunteers were not estimating values completely 
incorrectly. This consistent overprediction bias by the vol-
unteers could be due to the fact that most samples were 
actually in the lowest category or perhaps the volunteers 
were reading unfiltered samples and the lab data were for 
filtered samples.

Cluster analyses
Ward’s Method using Euclidean distance measures was 
applied to the water quality data in order to group the 
sampling sites into similar clusters. Applying the Dmax*0.66 
criterion, three distinct clusters emerged. To evaluate clus-
ter membership a PCA was performed on the variables  
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Event

Nitrate+nitrite-N Orthophosphate

Exact Agreement Within One Category Exact Agreement Within One Category

All 55% 84% 33% 99%

Fall 2009 73% 91% 37% 99%

Spring 2010 6% 37% — —

Fall 2010 57% 80% — —

Spring 2011 36% 93% — —

Fall 2011 73% 93% — —

Spring 2012 53% 94% — —

Fall 2012 72% 96% 12% 99%

Spring 2013 62% 96% 42% 100%

Fall 2013 67% 83% 43% 98%

Table 5: Percent agreement between field and lab tested nitrate+nitrite-N and orthophosphate data. 

(see Supplementary Materials). The variables contributing 
the greatest loading to the first three principal compo-
nents were summarized using boxplots, grouped by clus-
ter (Figure 7) and included: Spring and fall DOC, spring 
nitrate+nitrite-N, spring temperature, and fall and spring 
orthophosphate. Additionally, the cluster means are sum-
marized in a spider plot to visualize cluster separation  
(Figure 8). Boxplots for all other variables are included in 
the Supplementary Materials. 

The clusters were mapped within the watershed  
(Figure 9) and show a striking similarity to the land-use 
of the watershed (Figure 1) which can serve as a reason-
able way to evaluate the quality of the clusters (Templ et 
al. 2008). In comparing the land-use percentages of each 
cluster, Cluster 1 had the greatest percentage of urban and 
suburban land use, Cluster 2 had the greatest percentage 
of agricultural land use, and Cluster 3 had a fairly even 
mix of all land-use types.

The results showed that Cluster 1 generally had the 
highest fall and spring DOC, highest spring tempera-
ture, and highest spring orthophosphate. Additionally, 
this cluster had low spring nitrate+nitrite-N, lower fall 
orthophosphate concentrations, and lower transparency 
than the other clusters. Cluster 2 was characterized by 
some of the highest fall and spring nitrate+nitrite-N, 
generally higher fall orthophosphate, and lower DOC 
and greater transparency values compared to cluster 
1. Cluster 3 was the relatively “cleanest” cluster, having 
generally lower nutrients and DOC compared with the 
other two clusters while maintaining high transparency, 
average spring temperatures, and the lowest fall temper-
atures. The pH did not seem to vary greatly across the 
clusters.

Discussion and Conclusions
Citizen science data
The greatest challenge in comparing volunteer-deter-
mined and lab-analyzed water quality data was that the 
test strip methods of measuring nitrate+nitrite-N and 
orthophosphate as read by volunteers created categori-

cal datasets because volunteers picked values only on 
the scale provided within the strips. This can create a 
challenge in analyzing samples using common statistical 
methods. Similarly to Peckenham et al. (2012), we chose 
to address this issue by binning the continuous lab data 
into comparable categories; we then used multiple types 
of agreement analysis methods to compare the volunteer-
read and lab-tested data. The results demonstrated that 
for nitrate+nitrite-N, volunteers were consistently able to 
estimate concentrations using field test strips with moder-
ate to substantial agreement to lab values, although the 
potential biases of volunteer-read data were not evaluated. 
This is consistent with a study that demonstrated that 
nitrate test strips showed good precision when read by 
students (Peckenham and Peckenham 2014). Agreement 
between volunteer-read data and lab-analyzed data across 
the Blitz events and overall in this study supports the 
conclusion that citizen-collected data can be scientifically 
valid for water quality assessment, which is key to dem-
onstrating the usefulness of citizen science (Bonter and 
Cooper 2012). In addition to providing meaningful data, 
the fact that participants were able to accurately evalu-
ate on-site nitrate+nitrite-N concentrations enhances the 
educational outcomes for the Blitz participants (Jordan 
et al. 2012). 

The validity of orthophosphate observations meas-
ured on-site by volunteers was more difficult to assess 
considering there was little variability of measurements 
within the test strip categories (most of the lab-meas-
ured orthophosphate concentrations were very low) and 
there was a consistent overestimation by the volunteers. 
Similarly to this finding, Peckenham and Peckenham 
(2014) found that overestimation occurred when using 
nitrate+nitrite test strips when actual concentrations 
were low. However, some of the overestimation in 
orthophosphate comparisons could also result from the 
fact that the test strips measured orthophosphate in 
unfiltered water (e.g., with more sediment-bound phos-
phate) and the lab analysis was performed on filtered 
samples (e.g., with less sediment-bound phosphate). 
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This, combined with the fact that most of the data fell 
into the lowest test strip category, suggests that future 
orthophosphate testing—especially in this watershed—
would benefit from test strips that have more categories 
between 0 and 5 mg/L and from testing samples that have 
been filtered for better comparison. Overall, the results 
support the idea that water quality data observed by vol-
unteers can be acceptable for an educational experience 
and informative for watershed groups. 

Cluster interpretation for watershed management
The cluster analysis and characterization was completed 
only for volunteer-collected water quality data. Similarly 
to other studies (Kim et al. 2005; Shrestha and Kazama 

2006; Simeonov et al. 2003; Singh et al. 2004; Varol 
et al. 2012), the cluster analysis revealed unique primary 
management zones (Figure 8) that can be used to target 
education and conservation strategies in the future, as 
follows:

•	 Cluster 1: Urban/suburban management zone with 
high spring and fall DOC and generally lower nutri-
ents and transparency.

•	 Cluster 2: Agricultural management zone with the 
highest nutrients and lower DOC.

•	 Cluster 3: Minimal management zone with the 
greatest transparency and lower nutrient and DOC 
concentrations.

Figure 4: B statistics (top) and Cohen’s Kappa statistics (bottom) determined for volunteer-read versus lab-determined 
nitrate+nitrite-N data agreement. Qualitative values are based on Munoz and Bangdiwala (1997).
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Figure 5: Bubble plot showing agreement between field 
(volunteer readings) and lab (professional analyses) esti-
mated orthophosphate for all Blitz events. The number 
inside the bubble indicates how many observations fell 
into that category.

Figure 6: B statistics (top) and Cohen’s Kappa statistics (bottom) determined for volunteer-read versus lab-determined 
orthophosphate data agreement. Qualitative values are based on Munoz and Bangdiwala (1997).

These general relationships are useful for identifying the 
persistent water quality impacts associated with differ-
ent land uses (Foley et al. 2005) and serve to confirm 
targeted conservation strategies within the watershed. 
For example, although nutrient management is certainly 
important for agricultural land (Vitousek et al. 2010), 
sediment pollution may be a greater problem in urban 
streams (Tayler and Owens 2009) to the extent that 
transparency reflects sediment load. In contrast, excep-
tions to the general land use pattern can help to iden-
tify areas which might have specific polluters that are 
unrelated to land use. For example, one sampling site 
that falls into Cluster 2 is primarily forested and urban 
land, not agriculture. This specific area is host to a golf 
course, and previous research has shown that nutrient 
loadings from golf courses can be similar to those of 
agriculture (King et al. 2007), which likely explains why 
the site would fall into a cluster with primarily agricul-
tural land use. Another sampling site that is primarily 
forest and urban also was placed into Cluster 2. A small 
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Figure 7: Boxplots of spring and fall DOC and orthophosphate, as well as spring temperature and nitrate+nitrite-N,  
grouped by cluster membership. These six variables had significant loading on the first three principal components. 
All other variable boxplots are provided in the Supplementary Materials.
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Figure 8: Spider plot displaying the mean of each cluster for all twelve variables. 

wastewater treatment plant is located within this site, 
and the constant nitrate+nitrite-N signals likely explain 
its inclusion in this category. Overall, these clusters help 
provide WREC with insight into the specific water qual-
ity concerns seen throughout the watershed, so that 
management and education strategies can be improved 
(Brezonik et al. 1999).

The cluster results also can be used by WREC to deter-
mine which sites need no further testing given a shortage 
of volunteers or a reduction in budget (Wang et al. 2014). 
Lastly, this cluster analysis demonstrates how volunteer-
collected and tested data (transparency, temperature, 
pH) can be used along with volunteer-collected and lab-
tested data (nutrients, DOC) to perform more complex and 
informative analyses of water quality data. 

Citizen science approach for water quality monitoring
Watershed groups exist in all parts of the US and the world, 
and many operate as nonprofit organizations (Lubell 
et al. 2002). By collaborating with local citizen scientists, 

these groups can not only maximize their resources but 
also educate and involve the local community in water 
protection efforts (Cline and Collins 2003). Such groups, 
along with other citizen science-based organizations, are 
under increasing pressure to show the effectiveness of 
their programs (Conrad and Hilchey 2011). Overall, our 
research illustrates that citizen science-produced data 
can be highly valuable for use by watershed groups. Twice 
a year, hundreds of citizen scientists in Indiana help to 
sample 206 sites to provide a snapshot of water quality 
conditions in the Great Bend of the Wabash River Water-
shed that would otherwise not be achievable. By utiliz-
ing relatively inexpensive field test strips, volunteers are 
able to instantly evaluate the quality of the water they 
are sampling, which provides not only important data 
but a great educational opportunity. The test strips are 
inexpensive compared to lab analyses, and our analyeses 
show that they can be informative to water quality man-
agers even when read by the members of the public. The 
cluster analysis provides a replicable example of how citi-
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Figure 9: Watershed sub-basins mapped by cluster 
membership.

zen science-collected data can be used to further inform 
watershed management decisions. Overall, this work sup-
ports the increasing body of scientific knowledge demon-
strating that citizen scientists can contribute worthwhile 
data which can easily be used in planning by watershed 
groups.

Supplementary Materials
Supplementary material relating to this article is available 
at http://dx.doi.org/10.5334/cstp.1.s1
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